快速回调
Callbacks in Fastai
我正在 Fastai 进行深度学习项目,希望在其中使用 EarlyStoppingCallback 和 ReduceLROnPlateauCallback。阅读 callbacks.fastai 但难以理解如何实现这两者并且找不到任何相关示例。任何帮助将不胜感激。
learn = cnn_learner(data, models.resnet50, metrics = [accuracy,quadratic_kappa])
learn.fit(50,2e-6)
我平时的做法是这样的....
首先创建learner对象
learn = Learner(data,
model,
loss_func=....,
opt_func=....,
metrics=..... )
learn.unfreeze()
然后你在 fit_one_cycle
上调用任何回调
learn.fit_one_cycle(16,
max_lr=1e-3,
div_factor=100,
pct_start=0.0,
callbacks = [SaveModelCallback(learn,
name=f'model',monitor='kappa_score')])
也许你也可以这样做-:
from fastai.callbacks import *
from fastai.callback import Callback
from fastai.vision import partial
learner = cnn_learner(data, models.resnet50, metrics=[accuracy], pretrained=True, callback_fns=[partial(EarlyStoppingCallback, monitor='valid_loss', min_delta=0.01, patience=3)])
# or
learner = cnn_learner(data, models.resnet101, metrics=[accuracy], pretrained=True, callbacks=EarlyStoppingCallback(monitor='valid_loss', min_delta=0.01, patience=3))
learner.fit(150)
# it will stop if "valid_loss" will not decrease (patience=3)
我正在 Fastai 进行深度学习项目,希望在其中使用 EarlyStoppingCallback 和 ReduceLROnPlateauCallback。阅读 callbacks.fastai 但难以理解如何实现这两者并且找不到任何相关示例。任何帮助将不胜感激。
learn = cnn_learner(data, models.resnet50, metrics = [accuracy,quadratic_kappa])
learn.fit(50,2e-6)
我平时的做法是这样的....
首先创建learner对象
learn = Learner(data,
model,
loss_func=....,
opt_func=....,
metrics=..... )
learn.unfreeze()
然后你在 fit_one_cycle
上调用任何回调 learn.fit_one_cycle(16,
max_lr=1e-3,
div_factor=100,
pct_start=0.0,
callbacks = [SaveModelCallback(learn,
name=f'model',monitor='kappa_score')])
也许你也可以这样做-:
from fastai.callbacks import *
from fastai.callback import Callback
from fastai.vision import partial
learner = cnn_learner(data, models.resnet50, metrics=[accuracy], pretrained=True, callback_fns=[partial(EarlyStoppingCallback, monitor='valid_loss', min_delta=0.01, patience=3)])
# or
learner = cnn_learner(data, models.resnet101, metrics=[accuracy], pretrained=True, callbacks=EarlyStoppingCallback(monitor='valid_loss', min_delta=0.01, patience=3))
learner.fit(150)
# it will stop if "valid_loss" will not decrease (patience=3)