16个符号的可能序列数是否有一些限制
Number of possible sequences of 16 symbols are there given some restrictions
可以组成多少个符合以下规则的可能序列:
每个序列由符号0-9a-f
.
组成
每个序列正好是 16 个符号长。
0123456789abcdef ok
0123456789abcde XXX
0123456789abcdeff XXX
符号可以重复,但不超过4次。
00abcdefabcdef00 ok
00abcde0abcdef00 XXX
一个符号不能连续出现三次。
00abcdefabcdef12 ok
000bcdefabcdef12 XXX
最多可以有两对。
00abcdefabcdef11 ok
00abcde88edcba11 XXX
另外,全部生成需要多长时间?
可能性的数量是固定的。您可以想出一个算法来生成有效的组合,或者您可以迭代整个问题 space 并使用检查组合有效性的简单函数检查每个组合。
需要多长时间,取决于计算机和效率。您可以轻松地使其成为多线程应用程序。
这个程序统计了 16,390,235,567,479,693,920 个密码。
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
enum { RLength = 16 }; // Required length of password.
enum { NChars = 16 }; // Number of characters in alphabet.
typedef struct
{
/* N[i] counts how many instances of i are left to use, as constrained
by rule 3.
*/
unsigned N[NChars];
/* NPairs counts how many more pairs are allowed, as constrained by
rule 5.
*/
unsigned NPairs;
/* Used counts how many characters have been distinguished by choosing
them as a represenative. Symmetry remains unbroken for NChars - Used
characters.
*/
unsigned Used;
} Supply;
/* Count the number of passwords that can be formed starting with a string
(in String) of length Length, with state S.
*/
static uint64_t Count(int Length, Supply *S, char *String)
{
/* If we filled the string, we have one password that obeys the rules.
Return that. Otherwise, consider suffixing more characters.
*/
if (Length == RLength)
return 1;
// Initialize a count of the number of passwords beginning with String.
uint64_t C = 0;
// Consider suffixing each character distinguished so far.
for (unsigned Char = 0; Char < S->Used; ++Char)
{
/* If it would violate rule 3, limiting how many times the character
is used, do not suffix this character.
*/
if (S->N[Char] == 0) continue;
// Does the new character form a pair with the previous character?
unsigned IsPair = String[Length-1] == Char;
if (IsPair)
{
/* If it would violate rule 4, a character may not appear three
times in a row, do not suffix this character.
*/
if (String[Length-2] == Char) continue;
/* If it would violate rule 5, limiting how many times pairs may
appear, do not suffix this character.
*/
if (S->NPairs == 0) continue;
/* If it forms a pair, and our limit is not reached, count the
pair.
*/
--S->NPairs;
}
// Count the character.
--S->N[Char];
// Suffix the character.
String[Length] = Char;
// Add as many passwords as we can form by suffixing more characters.
C += Count(Length+1, S, String);
// Undo our changes to S.
++S->N[Char];
S->NPairs += IsPair;
}
/* Besides all the distinguished characters, select a representative from
the pool (we use the next unused character in numerical order), count
the passwords we can form from it, and multiply by the number of
characters that were in the pool.
*/
if (S->Used < NChars)
{
/* A new character cannot violate rule 3 (has not been used 4 times
yet, rule 4 (has not appeared three times in a row), or rule 5
(does not form a pair that could pass the pair limit). So we know,
without any tests, that we can suffix it.
*/
// Use the next unused character as a representative.
unsigned Char = S->Used;
/* By symmetry, we could use any of the remaining NChars - S->Used
characters here, so the total number of passwords that can be
formed from the current state is that number times the number that
can be formed by suffixing this particular representative.
*/
unsigned Multiplier = NChars - S->Used;
// Record another character is being distinguished.
++S->Used;
// Decrement the count for this character and suffix it to the string.
--S->N[Char];
String[Length] = Char;
// Add as many passwords as can be formed by suffixing a new character.
C += Multiplier * Count(Length+1, S, String);
// Undo our changes to S.
++S->N[Char];
--S->Used;
}
// Return the computed count.
return C;
}
int main(void)
{
/* Initialize our "supply" of characters. There are no distinguished
characters, two pairs may be used, and each character may be used at
most 4 times.
*/
Supply S = { .Used = 0, .NPairs = 2 };
for (unsigned Char = 0; Char < NChars; ++Char)
S.N[Char] = 4;
/* Prepare space for string of RLength characters preceded by a sentinel
(-1). The sentinel permits us to test for a repeated character without
worrying about whether the indexing goes outside array bounds.
*/
char String[RLength+1] = { -1 };
printf("There are %" PRIu64 " possible passwords.\n",
Count(0, &S, String+1));
}
在组合学中,计数通常非常简单,并且比穷举每个备选方案(或者更糟,穷举可能性的超集,以便过滤它们)更快地完成计数。一种常见的技术是将给定的问题减少为少量(ish)不相交的子问题的组合,其中可以看到每个子问题对总数的贡献有多少次。这种分析通常会产生动态规划解决方案,或者如下所示,产生记忆递归解决方案。
因为组合结果通常是巨大的数字,所以暴力生成每一种可能性,即使它可以对每个序列非常快速地完成,除了最微不足道的情况外,在所有情况下都是不切实际的。例如,对于这个特定问题,我在评论中做了粗略的粗略估计(自删除后):
There are 18446744073709551616 possible 64-bit (16 hex-digit) numbers, which is a very large number, about 18 billion billion. So if I could generate and test one of them per second, it would take me 18 billion seconds, or about 571 years. So with access to a cluster of 1000 96-core servers, I could do it all in about 54 hours, just a bit over two days. Amazon will sell me one 96-core server for just under a dollar an hour (spot prices), so a thousand of them for 54 hours would cost a little under 50,000 US dollars. Perhaps that's within reason. (But that's just to generate.)
毫无疑问,最初的问题是探索通过破解密码尝试所有可能序列的可能性的一部分,并不是真的有必要对可能的密码数量进行精确计数来证明该方法的不切实际性(或其对于预算足以支付必要计算资源的组织的实用性)。正如上面的估计所示,如果它所保护的内容足够有价值,则具有 64 位熵的密码实际上并不那么安全。在为您珍惜的东西生成密码时考虑到这一点。
尽管如此,计算精确的组合计数仍然很有趣,如果除了智力挑战之外没有其他原因的话。
以下主要是概念验证;我把它写在 Python 中是因为 Python 提供了一些在 C: hash tables 中使用元组键和任意精度整数算法来重现和调试的工具。它可以用 C 重写(或者更容易地用 C++ 重写),而且 Python 代码肯定可以改进,但考虑到计算原始问题中的计数请求只需要 70 毫秒,努力好像没必要。
该程序仔细地将可能的序列分组到不同的分区中,并将结果缓存在记忆中 table。对于长度为 16 的序列,如在 OP 中,缓存最终有 2540 个条目,这意味着核心计算仅完成 2540 次:
# The basis of the categorization are symbol usage vectors, which count the
# number of symbols used (that is, present in a prefix of the sequence)
# `i` times, for `i` ranging from 1 to the maximum number of symbol uses
# (4 in the case of this question). I tried to generalise the code for different
# parameters (length of the sequence, number of distinct symbols, maximum
# use count, maximum number of pairs). Increasing any of these parameters will,
# of course, increase the number of cases that need to be checked and thus slow
# the program down, but it seems to work for some quite large values.
# Because constantly adjusting the index was driving me crazy, I ended up
# using 1-based indexing for the usage vectors; the element with index 0 always
# has the value 0. This creates several inefficiencies but the practical
# consequences are insignificant.
### Functions to manipulate usage vectors
def noprev(used, prevcnt):
"""Decrements the use count of the previous symbol"""
return used[:prevcnt] + (used[prevcnt] - 1,) + used[prevcnt + 1:]
def bump1(used, count):
"""Registers that one symbol (with supplied count) is used once more."""
return ( used[:count]
+ (used[count] - 1, used[count + 1] + 1)
+ used[count + 2:]
)
def bump2(used, count):
"""Registers that one symbol (with supplied count) is used twice more."""
return ( used[:count]
+ (used[count] - 1, used[count + 1], used[count + 2] + 1)
+ used[count + 3:]
)
def add1(used):
"""Registers a new symbol used once."""
return (0, used[1] + 1) + used[2:]
def add2(used):
"""Registers a new symbol used twice."""
return (0, used[1], used[2] + 1) + used[3:]
def count(NSlots, NSyms, MaxUses, MaxPairs):
"""Counts the number of sequences of length NSlots over an alphabet
of NSyms symbols where no symbol is used more than MaxUses times,
no symbol appears three times in a row, and there are no more than
MaxPairs pairs of symbols.
"""
cache = {}
# Canonical description of the problem, used as a cache key
# pairs: the number of pairs in the prefix
# prevcnt: the use count of the last symbol in the prefix
# used: for i in [1, NSyms], the number of symbols used i times
# Note: used[0] is always 0. This problem is naturally 1-based
def helper(pairs, prevcnt, used):
key = (pairs, prevcnt, used)
if key not in cache:
# avail_slots: Number of remaining slots.
avail_slots = NSlots - sum(i * count for i, count in enumerate(used))
if avail_slots == 0:
total = 1
else:
# avail_syms: Number of unused symbols.
avail_syms = NSyms - sum(used)
# We can't use the previous symbol (which means we need
# to decrease the number of symbols with prevcnt uses).
adjusted = noprev(used, prevcnt)[:-1]
# First, add single repeats of already used symbols
total = sum(count * helper(pairs, i + 1, bump1(used, i))
for i, count in enumerate(adjusted)
if count)
# Then, a single instance of a new symbol
if avail_syms:
total += avail_syms * helper(pairs, 1, add1(used))
# If we can add pairs, add the already not-too-used symbols
if pairs and avail_slots > 1:
total += sum(count * helper(pairs - 1, i + 2, bump2(used, i))
for i, count in enumerate(adjusted[:-1])
if count)
# And a pair of a new symbol
if avail_syms:
total += avail_syms * helper(pairs - 1, 2, add2(used))
cache[key] = total
return cache[key]
rv = helper(MaxPairs, MaxUses, (0,)*(MaxUses + 1))
# print("Cache size: ", len(cache))
return rv
# From the command line, run this with the command:
# python3 SLOTS SYMBOLS USE_MAX PAIR_MAX
# There are defaults for all four argument.
if __name__ == "__main__":
from sys import argv
NSlots, NSyms, MaxUses, MaxPairs = 16, 16, 4, 2
if len(argv) > 1: NSlots = int(argv[1])
if len(argv) > 2: NSyms = int(argv[2])
if len(argv) > 3: MaxUses = int(argv[3])
if len(argv) > 4: MaxPairs = int(argv[4])
print (NSlots, NSyms, MaxUses, MaxPairs,
count(NSlots, NSyms, MaxUses, MaxPairs))
这是使用此程序计算所有有效序列的计数的结果(因为在限制条件下不可能超过 64 的序列),总共用时不到 11 秒:
$ time for i in $(seq 1 65); do python3 -m count $i 16 4; done
1 16 4 2 16
2 16 4 2 256
3 16 4 2 4080
4 16 4 2 65040
5 16 4 2 1036800
6 16 4 2 16524000
7 16 4 2 263239200
8 16 4 2 4190907600
9 16 4 2 66663777600
10 16 4 2 1059231378240
11 16 4 2 16807277588640
12 16 4 2 266248909553760
13 16 4 2 4209520662285120
14 16 4 2 66404063202640800
15 16 4 2 1044790948722393600
16 16 4 2 16390235567479693920
17 16 4 2 256273126082439298560
18 16 4 2 3992239682632407024000
19 16 4 2 61937222586063601795200
20 16 4 2 956591119531904748877440
21 16 4 2 14701107045788393912922240
22 16 4 2 224710650516510785696509440
23 16 4 2 3414592455661342007436384000
24 16 4 2 51555824538229409502827923200
25 16 4 2 773058043102197617863741843200
26 16 4 2 11505435580713064249590793862400
27 16 4 2 169863574496121086821681298457600
28 16 4 2 2486228772352331019060452730124800
29 16 4 2 36053699633157440642183732148192000
30 16 4 2 517650511567565591598163978874476800
31 16 4 2 7353538304042081751756339918288153600
32 16 4 2 103277843408210067510518893242552998400
33 16 4 2 1432943471827935940003777587852746035200
34 16 4 2 19624658467616639408457675812975159808000
35 16 4 2 265060115658802288611235565334010714521600
36 16 4 2 3527358829586230228770473319879741669580800
37 16 4 2 46204536626522631728453996238126656113459200
38 16 4 2 595094456544732751483475986076977832633088000
39 16 4 2 7527596027223722410480884495557694054538752000
40 16 4 2 93402951052248340658328049006200193398898022400
41 16 4 2 1135325942092947647158944525526875233118233702400
42 16 4 2 13499233156243746249781875272736634831519281254400
43 16 4 2 156762894800798673690487714464110515978059412992000
44 16 4 2 1774908625866508837753023260462716016827409668608000
45 16 4 2 19556269668280714729769444926596793510048970792448000
46 16 4 2 209250137714454234944952304185555699000268936613376000
47 16 4 2 2169234173368534856955926000562793170629056490849280000
48 16 4 2 21730999613085754709596718971411286413365188258316288000
49 16 4 2 209756078324313353775088590268126891517374425535395840000
50 16 4 2 1944321975918071063760157244341119456021429461885104128000
51 16 4 2 17242033559634684233385212588199122289377881249323872256000
52 16 4 2 145634772367323301463634877324516598329621152347129008128000
53 16 4 2 1165639372591494145461717861856832014651221024450263064576000
54 16 4 2 8786993110693628054377356115257445564685015517718871715840000
55 16 4 2 61931677369820445021334706794916410630936084274106426433536000
56 16 4 2 404473662028342481432803610109490421866960104314699801413632000
57 16 4 2 2420518371006088374060249179329765722052271121139667645435904000
58 16 4 2 13083579933158945327317577444119759305888865127012932088217600000
59 16 4 2 62671365871027968962625027691561817997506140958876900738150400000
60 16 4 2 259105543035583039429766038662433668998456660566416258886520832000
61 16 4 2 889428267668414961089138119575550372014240808053275769482575872000
62 16 4 2 2382172342138755521077314116848435721862984634708789861244239872000
63 16 4 2 4437213293644311557816587990199342976125765663655136187709235200000
64 16 4 2 4325017367677880742663367673632369189388101830634256108595793920000
65 16 4 2 0
real 0m10.924s
user 0m10.538s
sys 0m0.388s
可以组成多少个符合以下规则的可能序列:
每个序列由符号
0-9a-f
. 组成
每个序列正好是 16 个符号长。
0123456789abcdef ok 0123456789abcde XXX 0123456789abcdeff XXX
符号可以重复,但不超过4次。
00abcdefabcdef00 ok 00abcde0abcdef00 XXX
一个符号不能连续出现三次。
00abcdefabcdef12 ok 000bcdefabcdef12 XXX
最多可以有两对。
00abcdefabcdef11 ok 00abcde88edcba11 XXX
另外,全部生成需要多长时间?
可能性的数量是固定的。您可以想出一个算法来生成有效的组合,或者您可以迭代整个问题 space 并使用检查组合有效性的简单函数检查每个组合。
需要多长时间,取决于计算机和效率。您可以轻松地使其成为多线程应用程序。
这个程序统计了 16,390,235,567,479,693,920 个密码。
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
enum { RLength = 16 }; // Required length of password.
enum { NChars = 16 }; // Number of characters in alphabet.
typedef struct
{
/* N[i] counts how many instances of i are left to use, as constrained
by rule 3.
*/
unsigned N[NChars];
/* NPairs counts how many more pairs are allowed, as constrained by
rule 5.
*/
unsigned NPairs;
/* Used counts how many characters have been distinguished by choosing
them as a represenative. Symmetry remains unbroken for NChars - Used
characters.
*/
unsigned Used;
} Supply;
/* Count the number of passwords that can be formed starting with a string
(in String) of length Length, with state S.
*/
static uint64_t Count(int Length, Supply *S, char *String)
{
/* If we filled the string, we have one password that obeys the rules.
Return that. Otherwise, consider suffixing more characters.
*/
if (Length == RLength)
return 1;
// Initialize a count of the number of passwords beginning with String.
uint64_t C = 0;
// Consider suffixing each character distinguished so far.
for (unsigned Char = 0; Char < S->Used; ++Char)
{
/* If it would violate rule 3, limiting how many times the character
is used, do not suffix this character.
*/
if (S->N[Char] == 0) continue;
// Does the new character form a pair with the previous character?
unsigned IsPair = String[Length-1] == Char;
if (IsPair)
{
/* If it would violate rule 4, a character may not appear three
times in a row, do not suffix this character.
*/
if (String[Length-2] == Char) continue;
/* If it would violate rule 5, limiting how many times pairs may
appear, do not suffix this character.
*/
if (S->NPairs == 0) continue;
/* If it forms a pair, and our limit is not reached, count the
pair.
*/
--S->NPairs;
}
// Count the character.
--S->N[Char];
// Suffix the character.
String[Length] = Char;
// Add as many passwords as we can form by suffixing more characters.
C += Count(Length+1, S, String);
// Undo our changes to S.
++S->N[Char];
S->NPairs += IsPair;
}
/* Besides all the distinguished characters, select a representative from
the pool (we use the next unused character in numerical order), count
the passwords we can form from it, and multiply by the number of
characters that were in the pool.
*/
if (S->Used < NChars)
{
/* A new character cannot violate rule 3 (has not been used 4 times
yet, rule 4 (has not appeared three times in a row), or rule 5
(does not form a pair that could pass the pair limit). So we know,
without any tests, that we can suffix it.
*/
// Use the next unused character as a representative.
unsigned Char = S->Used;
/* By symmetry, we could use any of the remaining NChars - S->Used
characters here, so the total number of passwords that can be
formed from the current state is that number times the number that
can be formed by suffixing this particular representative.
*/
unsigned Multiplier = NChars - S->Used;
// Record another character is being distinguished.
++S->Used;
// Decrement the count for this character and suffix it to the string.
--S->N[Char];
String[Length] = Char;
// Add as many passwords as can be formed by suffixing a new character.
C += Multiplier * Count(Length+1, S, String);
// Undo our changes to S.
++S->N[Char];
--S->Used;
}
// Return the computed count.
return C;
}
int main(void)
{
/* Initialize our "supply" of characters. There are no distinguished
characters, two pairs may be used, and each character may be used at
most 4 times.
*/
Supply S = { .Used = 0, .NPairs = 2 };
for (unsigned Char = 0; Char < NChars; ++Char)
S.N[Char] = 4;
/* Prepare space for string of RLength characters preceded by a sentinel
(-1). The sentinel permits us to test for a repeated character without
worrying about whether the indexing goes outside array bounds.
*/
char String[RLength+1] = { -1 };
printf("There are %" PRIu64 " possible passwords.\n",
Count(0, &S, String+1));
}
在组合学中,计数通常非常简单,并且比穷举每个备选方案(或者更糟,穷举可能性的超集,以便过滤它们)更快地完成计数。一种常见的技术是将给定的问题减少为少量(ish)不相交的子问题的组合,其中可以看到每个子问题对总数的贡献有多少次。这种分析通常会产生动态规划解决方案,或者如下所示,产生记忆递归解决方案。
因为组合结果通常是巨大的数字,所以暴力生成每一种可能性,即使它可以对每个序列非常快速地完成,除了最微不足道的情况外,在所有情况下都是不切实际的。例如,对于这个特定问题,我在评论中做了粗略的粗略估计(自删除后):
There are 18446744073709551616 possible 64-bit (16 hex-digit) numbers, which is a very large number, about 18 billion billion. So if I could generate and test one of them per second, it would take me 18 billion seconds, or about 571 years. So with access to a cluster of 1000 96-core servers, I could do it all in about 54 hours, just a bit over two days. Amazon will sell me one 96-core server for just under a dollar an hour (spot prices), so a thousand of them for 54 hours would cost a little under 50,000 US dollars. Perhaps that's within reason. (But that's just to generate.)
毫无疑问,最初的问题是探索通过破解密码尝试所有可能序列的可能性的一部分,并不是真的有必要对可能的密码数量进行精确计数来证明该方法的不切实际性(或其对于预算足以支付必要计算资源的组织的实用性)。正如上面的估计所示,如果它所保护的内容足够有价值,则具有 64 位熵的密码实际上并不那么安全。在为您珍惜的东西生成密码时考虑到这一点。
尽管如此,计算精确的组合计数仍然很有趣,如果除了智力挑战之外没有其他原因的话。
以下主要是概念验证;我把它写在 Python 中是因为 Python 提供了一些在 C: hash tables 中使用元组键和任意精度整数算法来重现和调试的工具。它可以用 C 重写(或者更容易地用 C++ 重写),而且 Python 代码肯定可以改进,但考虑到计算原始问题中的计数请求只需要 70 毫秒,努力好像没必要。
该程序仔细地将可能的序列分组到不同的分区中,并将结果缓存在记忆中 table。对于长度为 16 的序列,如在 OP 中,缓存最终有 2540 个条目,这意味着核心计算仅完成 2540 次:
# The basis of the categorization are symbol usage vectors, which count the
# number of symbols used (that is, present in a prefix of the sequence)
# `i` times, for `i` ranging from 1 to the maximum number of symbol uses
# (4 in the case of this question). I tried to generalise the code for different
# parameters (length of the sequence, number of distinct symbols, maximum
# use count, maximum number of pairs). Increasing any of these parameters will,
# of course, increase the number of cases that need to be checked and thus slow
# the program down, but it seems to work for some quite large values.
# Because constantly adjusting the index was driving me crazy, I ended up
# using 1-based indexing for the usage vectors; the element with index 0 always
# has the value 0. This creates several inefficiencies but the practical
# consequences are insignificant.
### Functions to manipulate usage vectors
def noprev(used, prevcnt):
"""Decrements the use count of the previous symbol"""
return used[:prevcnt] + (used[prevcnt] - 1,) + used[prevcnt + 1:]
def bump1(used, count):
"""Registers that one symbol (with supplied count) is used once more."""
return ( used[:count]
+ (used[count] - 1, used[count + 1] + 1)
+ used[count + 2:]
)
def bump2(used, count):
"""Registers that one symbol (with supplied count) is used twice more."""
return ( used[:count]
+ (used[count] - 1, used[count + 1], used[count + 2] + 1)
+ used[count + 3:]
)
def add1(used):
"""Registers a new symbol used once."""
return (0, used[1] + 1) + used[2:]
def add2(used):
"""Registers a new symbol used twice."""
return (0, used[1], used[2] + 1) + used[3:]
def count(NSlots, NSyms, MaxUses, MaxPairs):
"""Counts the number of sequences of length NSlots over an alphabet
of NSyms symbols where no symbol is used more than MaxUses times,
no symbol appears three times in a row, and there are no more than
MaxPairs pairs of symbols.
"""
cache = {}
# Canonical description of the problem, used as a cache key
# pairs: the number of pairs in the prefix
# prevcnt: the use count of the last symbol in the prefix
# used: for i in [1, NSyms], the number of symbols used i times
# Note: used[0] is always 0. This problem is naturally 1-based
def helper(pairs, prevcnt, used):
key = (pairs, prevcnt, used)
if key not in cache:
# avail_slots: Number of remaining slots.
avail_slots = NSlots - sum(i * count for i, count in enumerate(used))
if avail_slots == 0:
total = 1
else:
# avail_syms: Number of unused symbols.
avail_syms = NSyms - sum(used)
# We can't use the previous symbol (which means we need
# to decrease the number of symbols with prevcnt uses).
adjusted = noprev(used, prevcnt)[:-1]
# First, add single repeats of already used symbols
total = sum(count * helper(pairs, i + 1, bump1(used, i))
for i, count in enumerate(adjusted)
if count)
# Then, a single instance of a new symbol
if avail_syms:
total += avail_syms * helper(pairs, 1, add1(used))
# If we can add pairs, add the already not-too-used symbols
if pairs and avail_slots > 1:
total += sum(count * helper(pairs - 1, i + 2, bump2(used, i))
for i, count in enumerate(adjusted[:-1])
if count)
# And a pair of a new symbol
if avail_syms:
total += avail_syms * helper(pairs - 1, 2, add2(used))
cache[key] = total
return cache[key]
rv = helper(MaxPairs, MaxUses, (0,)*(MaxUses + 1))
# print("Cache size: ", len(cache))
return rv
# From the command line, run this with the command:
# python3 SLOTS SYMBOLS USE_MAX PAIR_MAX
# There are defaults for all four argument.
if __name__ == "__main__":
from sys import argv
NSlots, NSyms, MaxUses, MaxPairs = 16, 16, 4, 2
if len(argv) > 1: NSlots = int(argv[1])
if len(argv) > 2: NSyms = int(argv[2])
if len(argv) > 3: MaxUses = int(argv[3])
if len(argv) > 4: MaxPairs = int(argv[4])
print (NSlots, NSyms, MaxUses, MaxPairs,
count(NSlots, NSyms, MaxUses, MaxPairs))
这是使用此程序计算所有有效序列的计数的结果(因为在限制条件下不可能超过 64 的序列),总共用时不到 11 秒:
$ time for i in $(seq 1 65); do python3 -m count $i 16 4; done
1 16 4 2 16
2 16 4 2 256
3 16 4 2 4080
4 16 4 2 65040
5 16 4 2 1036800
6 16 4 2 16524000
7 16 4 2 263239200
8 16 4 2 4190907600
9 16 4 2 66663777600
10 16 4 2 1059231378240
11 16 4 2 16807277588640
12 16 4 2 266248909553760
13 16 4 2 4209520662285120
14 16 4 2 66404063202640800
15 16 4 2 1044790948722393600
16 16 4 2 16390235567479693920
17 16 4 2 256273126082439298560
18 16 4 2 3992239682632407024000
19 16 4 2 61937222586063601795200
20 16 4 2 956591119531904748877440
21 16 4 2 14701107045788393912922240
22 16 4 2 224710650516510785696509440
23 16 4 2 3414592455661342007436384000
24 16 4 2 51555824538229409502827923200
25 16 4 2 773058043102197617863741843200
26 16 4 2 11505435580713064249590793862400
27 16 4 2 169863574496121086821681298457600
28 16 4 2 2486228772352331019060452730124800
29 16 4 2 36053699633157440642183732148192000
30 16 4 2 517650511567565591598163978874476800
31 16 4 2 7353538304042081751756339918288153600
32 16 4 2 103277843408210067510518893242552998400
33 16 4 2 1432943471827935940003777587852746035200
34 16 4 2 19624658467616639408457675812975159808000
35 16 4 2 265060115658802288611235565334010714521600
36 16 4 2 3527358829586230228770473319879741669580800
37 16 4 2 46204536626522631728453996238126656113459200
38 16 4 2 595094456544732751483475986076977832633088000
39 16 4 2 7527596027223722410480884495557694054538752000
40 16 4 2 93402951052248340658328049006200193398898022400
41 16 4 2 1135325942092947647158944525526875233118233702400
42 16 4 2 13499233156243746249781875272736634831519281254400
43 16 4 2 156762894800798673690487714464110515978059412992000
44 16 4 2 1774908625866508837753023260462716016827409668608000
45 16 4 2 19556269668280714729769444926596793510048970792448000
46 16 4 2 209250137714454234944952304185555699000268936613376000
47 16 4 2 2169234173368534856955926000562793170629056490849280000
48 16 4 2 21730999613085754709596718971411286413365188258316288000
49 16 4 2 209756078324313353775088590268126891517374425535395840000
50 16 4 2 1944321975918071063760157244341119456021429461885104128000
51 16 4 2 17242033559634684233385212588199122289377881249323872256000
52 16 4 2 145634772367323301463634877324516598329621152347129008128000
53 16 4 2 1165639372591494145461717861856832014651221024450263064576000
54 16 4 2 8786993110693628054377356115257445564685015517718871715840000
55 16 4 2 61931677369820445021334706794916410630936084274106426433536000
56 16 4 2 404473662028342481432803610109490421866960104314699801413632000
57 16 4 2 2420518371006088374060249179329765722052271121139667645435904000
58 16 4 2 13083579933158945327317577444119759305888865127012932088217600000
59 16 4 2 62671365871027968962625027691561817997506140958876900738150400000
60 16 4 2 259105543035583039429766038662433668998456660566416258886520832000
61 16 4 2 889428267668414961089138119575550372014240808053275769482575872000
62 16 4 2 2382172342138755521077314116848435721862984634708789861244239872000
63 16 4 2 4437213293644311557816587990199342976125765663655136187709235200000
64 16 4 2 4325017367677880742663367673632369189388101830634256108595793920000
65 16 4 2 0
real 0m10.924s
user 0m10.538s
sys 0m0.388s