R 汇总折叠 Data.Table
R Summarize Collapsed Data.Table
我有这样的数据
data <- data.table(
"School" = c(1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1,
1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0),
"Grade" = c(0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1,
0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0),
"CAT" = c(1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1),
"FOX" = c(1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0),
"DOG" = c(0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0,
0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1)
)
并希望获得这样的新数据table:
dataWANT <- data.frame(
"VARIABLE" = c('CAT', 'CAT', 'CAT', 'FOX', 'FOX', 'FOX', 'DOG', 'DOG', 'DOG'),
"SCHOOL" = c(1, 1, 0, 1, 1, 0, 1, 1, 0),
"GRADE" = c(0, 1, 1, 0, 1, 1, 0, 1, 1),
"MEAN" = c(NA)
)
dataWANT
通过 SCHOOL
、GRADE
和 SCHOOL
取 CAT
、FOX
和 DOG
的平均值X GRADE
当它们等于 1.
我知道如何一次做一个,但这不利于处理大数据。
data[, CAT1 := mean(CAT), by = list(SCHOOL)]
data[, FOX1 := mean(FOX), by = list(GRADE)]
data[, DOG1 := mean(DOG), by = list(SCHOOL, GRADE)]
data$CAT2 = unique(data[SCHOOL == 1, CAT1])
data$FOX2 = unique(data[GRADE == 1, FOX1])
data$DOG2 = unique(data[SCHOOL == 1 & GRADE == 1, DOG1])
请只使用这个:
data <- data.table(
"SCHOOL" = c(1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1,
1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0),
"GRADE" = c(0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1,
0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0),
"CAT" = c(1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1),
"FOX" = c(1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0),
"DOG" = c(0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0,
0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1)
)
data[, CAT1 := mean(CAT), by = list(SCHOOL)]
data[, CAT2 := mean(CAT), by = list(GRADE)]
data[, CAT3 := mean(CAT), by = list(SCHOOL, GRADE)]
data[, FOX1 := mean(FOX), by = list(SCHOOL)]
data[, FOX2 := mean(FOX), by = list(GRADE)]
data[, FOX3 := mean(FOX), by = list(SCHOOL, GRADE)]
data[, DOG1 := mean(DOG), by = list(SCHOOL)]
data[, DOG2 := mean(DOG), by = list(GRADE)]
data[, DOG3 := mean(DOG), by = list(SCHOOL, GRADE)]
dataWANT <- data.frame(
"VARIABLE" = c('CAT', 'CAT', 'CAT', 'FOX', 'FOX', 'FOX', 'DOG', 'DOG', 'DOG'),
"TYPE" = c(1, 2, 3, 1, 2, 3, 1, 2, 3),
"MEAN" = c(0.48, 0.44, 0.428, 0.6, 0.611, 0.6428, 0.52, 0.61, 0.6428)
)
其中:
当 MEAN
由 SCHOOL
、
估计时,TYPE
等于 1
当 MEAN
由 GRADE
、
估计时,TYPE
等于 2
当 MEAN
由 SCHOOL
和 GRADE
估计时,TYPE
等于 3
你是想得到这样的东西吗?
library(data.table)
melt(data, measure.vars = c('CAT', 'FOX', 'DOG'))[,
.(MEAN = mean(value, na.rm = TRUE)), .(School, Grade, variable)]
要按不同的列对其进行分组,我们可以这样做:
cols <- c('CAT', 'FOX', 'DOG')
data1 <- melt(data, measure.vars = cols)
list_cols <- list('School', 'Grade', c('School', 'Grade'))
lapply(list_cols, function(x)
data1[, .(MEAN = mean(value, na.rm = TRUE)), c(x, 'variable')])
我们可以在创建 list
之后使用 rbindlist
,方法是在 melt
数据集之后获取 MEAN
(与另一个 post 一样)
library(data.table)
cols <- c('CAT', 'FOX', 'DOG')
data1 <- melt(data, measure.vars = cols)
list_cols <- list('SCHOOL', 'GRADE', c('SCHOOL', 'GRADE'))
lst1 <- lapply(list_cols, function(x)
data1[, .(MEAN = mean(value, na.rm = TRUE)), c(x, 'variable')])
rbindlist(lapply(lst1, function(x) {
nm1 <- setdiff(names(x), c('variable', 'MEAN'))
x[Reduce(`&`, lapply(mget(nm1), as.logical)),
.(VARIABLE = variable, MEAN)]}), idcol = 'TYPE')[order(VARIABLE)]
# TYPE VARIABLE MEAN
#1: 1 CAT 0.4800000
#2: 2 CAT 0.4444444
#3: 3 CAT 0.4285714
#4: 1 FOX 0.6000000
#5: 2 FOX 0.5555556
#6: 3 FOX 0.6428571
#7: 1 DOG 0.5200000
#8: 2 DOG 0.6111111
#9: 3 DOG 0.6428571
您可以首先使用 lapply(.SD,...)
进行子集化并计算您的均值,然后将其融合到您的输出中:
melt(data[School != 0 | Grade != 0, lapply(.SD, mean), by = .(School, Grade)], id.vars = c("School", "Grade"))
在还添加 TYPE 变量之后添加它
...][, TYPE := School + (2*Grade)]
将它们放在一起并进行整理,它符合您想要的输出
dataWANT <- melt(data[School != 0 | Grade != 0, lapply(.SD, mean), by = .(School, Grade)], id.vars = c("School", "Grade"))[, TYPE := School + (2*Grade)][order(variable, TYPE), .("VARIABLE" = variable, TYPE, "MEAN" = value)]
我有这样的数据
data <- data.table(
"School" = c(1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1,
1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0),
"Grade" = c(0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1,
0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0),
"CAT" = c(1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1),
"FOX" = c(1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0),
"DOG" = c(0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0,
0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1)
)
并希望获得这样的新数据table:
dataWANT <- data.frame(
"VARIABLE" = c('CAT', 'CAT', 'CAT', 'FOX', 'FOX', 'FOX', 'DOG', 'DOG', 'DOG'),
"SCHOOL" = c(1, 1, 0, 1, 1, 0, 1, 1, 0),
"GRADE" = c(0, 1, 1, 0, 1, 1, 0, 1, 1),
"MEAN" = c(NA)
)
dataWANT
通过 SCHOOL
、GRADE
和 SCHOOL
取 CAT
、FOX
和 DOG
的平均值X GRADE
当它们等于 1.
我知道如何一次做一个,但这不利于处理大数据。
data[, CAT1 := mean(CAT), by = list(SCHOOL)]
data[, FOX1 := mean(FOX), by = list(GRADE)]
data[, DOG1 := mean(DOG), by = list(SCHOOL, GRADE)]
data$CAT2 = unique(data[SCHOOL == 1, CAT1])
data$FOX2 = unique(data[GRADE == 1, FOX1])
data$DOG2 = unique(data[SCHOOL == 1 & GRADE == 1, DOG1])
请只使用这个:
data <- data.table(
"SCHOOL" = c(1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1,
1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0),
"GRADE" = c(0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1,
0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0),
"CAT" = c(1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1),
"FOX" = c(1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0),
"DOG" = c(0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0,
0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1)
)
data[, CAT1 := mean(CAT), by = list(SCHOOL)]
data[, CAT2 := mean(CAT), by = list(GRADE)]
data[, CAT3 := mean(CAT), by = list(SCHOOL, GRADE)]
data[, FOX1 := mean(FOX), by = list(SCHOOL)]
data[, FOX2 := mean(FOX), by = list(GRADE)]
data[, FOX3 := mean(FOX), by = list(SCHOOL, GRADE)]
data[, DOG1 := mean(DOG), by = list(SCHOOL)]
data[, DOG2 := mean(DOG), by = list(GRADE)]
data[, DOG3 := mean(DOG), by = list(SCHOOL, GRADE)]
dataWANT <- data.frame(
"VARIABLE" = c('CAT', 'CAT', 'CAT', 'FOX', 'FOX', 'FOX', 'DOG', 'DOG', 'DOG'),
"TYPE" = c(1, 2, 3, 1, 2, 3, 1, 2, 3),
"MEAN" = c(0.48, 0.44, 0.428, 0.6, 0.611, 0.6428, 0.52, 0.61, 0.6428)
)
其中:
当 MEAN
由 SCHOOL
、
估计时,TYPE
等于 1
当 MEAN
由 GRADE
、
估计时,TYPE
等于 2
当 MEAN
由 SCHOOL
和 GRADE
TYPE
等于 3
你是想得到这样的东西吗?
library(data.table)
melt(data, measure.vars = c('CAT', 'FOX', 'DOG'))[,
.(MEAN = mean(value, na.rm = TRUE)), .(School, Grade, variable)]
要按不同的列对其进行分组,我们可以这样做:
cols <- c('CAT', 'FOX', 'DOG')
data1 <- melt(data, measure.vars = cols)
list_cols <- list('School', 'Grade', c('School', 'Grade'))
lapply(list_cols, function(x)
data1[, .(MEAN = mean(value, na.rm = TRUE)), c(x, 'variable')])
我们可以在创建 list
之后使用 rbindlist
,方法是在 melt
数据集之后获取 MEAN
(与另一个 post 一样)
library(data.table)
cols <- c('CAT', 'FOX', 'DOG')
data1 <- melt(data, measure.vars = cols)
list_cols <- list('SCHOOL', 'GRADE', c('SCHOOL', 'GRADE'))
lst1 <- lapply(list_cols, function(x)
data1[, .(MEAN = mean(value, na.rm = TRUE)), c(x, 'variable')])
rbindlist(lapply(lst1, function(x) {
nm1 <- setdiff(names(x), c('variable', 'MEAN'))
x[Reduce(`&`, lapply(mget(nm1), as.logical)),
.(VARIABLE = variable, MEAN)]}), idcol = 'TYPE')[order(VARIABLE)]
# TYPE VARIABLE MEAN
#1: 1 CAT 0.4800000
#2: 2 CAT 0.4444444
#3: 3 CAT 0.4285714
#4: 1 FOX 0.6000000
#5: 2 FOX 0.5555556
#6: 3 FOX 0.6428571
#7: 1 DOG 0.5200000
#8: 2 DOG 0.6111111
#9: 3 DOG 0.6428571
您可以首先使用 lapply(.SD,...)
进行子集化并计算您的均值,然后将其融合到您的输出中:
melt(data[School != 0 | Grade != 0, lapply(.SD, mean), by = .(School, Grade)], id.vars = c("School", "Grade"))
在还添加 TYPE 变量之后添加它
...][, TYPE := School + (2*Grade)]
将它们放在一起并进行整理,它符合您想要的输出
dataWANT <- melt(data[School != 0 | Grade != 0, lapply(.SD, mean), by = .(School, Grade)], id.vars = c("School", "Grade"))[, TYPE := School + (2*Grade)][order(variable, TYPE), .("VARIABLE" = variable, TYPE, "MEAN" = value)]