了解 TfidfVectorizer 中的前 n 个 tfidf 功能

understanding top n tfidf features in TfidfVectorizer

我想更好地理解 scikit-learnTfidfVectorizer。下面的代码有两个文档doc1 = The car is driven on the road,doc2 = The truck is driven on the highway。通过调用 fit_transform 生成 tf-idf 权重的向量化矩阵。

根据tf-idf值矩阵,highway,truck,car不应该是排名靠前的词而不是highway,truck,driven作为highway = truck= car= 0.63 and driven = 0.44吗?

#testing tfidfvectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np

tn = ['The car is driven on the road', 'The truck is driven on the highway']
vectorizer = TfidfVectorizer(tokenizer= lambda x:x.split(),stop_words = 'english')
response = vectorizer.fit_transform(tn)

feature_array = np.array(vectorizer.get_feature_names()) #list of features
print(feature_array)
print(response.toarray())

sorted_features = np.argsort(response.toarray()).flatten()[:-1] #index of highest valued features
print(sorted_features)

#printing top 3 weighted features
n = 3
top_n = feature_array[sorted_features][:n]
print(top_n)
['car' 'driven' 'highway' 'road' 'truck']
[[0.6316672  0.44943642 0.         0.6316672  0.        ]
 [0.         0.44943642 0.6316672  0.         0.6316672 ]]
[2 4 1 0 3 0 3 1 2]
['highway' 'truck' 'driven']

从结果可以看出,tf-idf矩阵确实给了highwaytruckcar(和truck)更高的分数:

tn = ['The car is driven on the road', 'The truck is driven on the highway']
vectorizer = TfidfVectorizer(stop_words = 'english')
response = vectorizer.fit_transform(tn)
terms = vectorizer.get_feature_names()

pd.DataFrame(response.toarray(), columns=terms)

        car    driven   highway      road     truck
0  0.631667  0.449436  0.000000  0.631667  0.000000
1  0.000000  0.449436  0.631667  0.000000  0.631667

错误的是您通过展平数组所做的进一步检查。要获得所有行的最高分,您可以改为执行以下操作:

max_scores = response.toarray().max(0).argsort()
np.array(terms)[max_scores[-4:]]
array(['car', 'highway', 'road', 'truck'], dtype='<U7')

其中最高分是 feature_names,在数据框中有 0.63 分。