一种快速填充轮廓的方法,能够导出为类似多边形的格式

A fast way to fill contours with the ability to export to a polygon-like format

我在canvas上展示了一些医学图片,如下图所示。

我正在尝试制作一个工具,让您可以 select 使用该工具以可扩展圆圈的形式对图像的任何区域进行填充,并仅填充其中不存在的部分' 超出原始点击像素所在的轮廓。在单独的 canvas 图层上绘制填充轮廓。

现在我使用最常见的迭代堆栈实现 flood fill with variable tolerance(比较函数)。 You can familiarize yourself with it here。一切都不是很好,特别是在没有强烈对比度差异的图片和高分辨率图像中,其他一切都很慢。

我想创建一个 状态容器 并查看是否存在所需的填充轮廓,如果存在,则只需替换 canvas 像素阵列(不过,我将不得不再次进行一些额外的处理,canvas 像素数组包含 4 个通道,而在算法的输出中只获得 1 个并且只替换内容是行不通的,你需要用分成 4 个通道的像素替换每个像素),而不是每次都进行缓慢的洪水填充。但是这种方法有一个严重的问题:内存消耗。正如您可能猜到的那样,一个填充的轮廓,尤其是单独一个像样的分辨率,会占用相当多的空间 space,并且它们的设置成为一个真正的内存消耗问题。

决定以多边形的形式存储完成的轮廓,并从容器中提取它们,只需用更快的速度填充它们 context fill。使用的算法允许我输出一组边界,但由于算法的特点,这个数组是无序的并且按此顺序连接顶点,我们只能得到部分填充的轮廓(右图)。有没有办法对它们进行排序,使我只能连接它们并获得一条闭合路径(左图中填充轮廓中的孔不应该是先验的,所以我们不必担心关于他们)?

总结一下,由于不是最好的填充作业,我想使用不同的算法/实现,但我不知道是哪个。 以下是我的一些想法:

  1. 使用不同的实现方式,例如线扫描方式。据我所知,here is one of the fastest and most effective implementations of the algorithm among open sources。 优点:可能的效率和速度。 缺点:我需要以某种方式将结果转换为多边形,将算法重写为javascript(可能emscripten,可以做得很好,但无论如何我将不得不重写相当一部分代码).

  2. 使用完全不同的方法。

    a) 我不知道,但也许 Canny 检测器可用于提取多边形。但就程序在客户端的使用而言,提取所有边界将无利可图,需要弄清楚如何只处理必要的部分,而不是整个画面。

    b) 然后,知道边界,使用任何足够快的填充算法,不会超出找到的边界。

我很乐意了解其他一些方法,如果能在 javascript

中看到现成的实现,那就更好了

UPD:

为了更好的理解,下面给出了工具光标和算法的预期结果。

这里是opencv的例子

下面应该工作或最终使用代码片段中提供的 fiddle link

感兴趣:approxPolyDP 可能足以满足您的需求(检查 Ramer-Douglas-Peucker algorithm

// USE FIDDLE
// https://jsfiddle.net/c7xrq1uy/

async function loadSomeImage() {
  const ctx = document.querySelector('#imageSrc').getContext('2d')
  ctx.fillStyle = 'black'
  const img = new Image()
  img.crossOrigin = ''
  img.src = 'https://cors-anywhere.herokuapp.com/https://i.stack.imgur.com/aiZ7z.png'

  img.onload = () => {
    const imgwidth = img.offsetWidth
    const imgheight = img.offsetHeight
    ctx.drawImage(img, 0, 0, img.width, img.height, 0, 0, 400, 400) 
  }
}

function plotPoints(canvas, points, color = 'green', hold = false){
  const ctx = canvas.getContext('2d')
  !hold && ctx.clearRect(0, 0, 400, 400)
  ctx.strokeStyle = color

  Object.values(points).forEach(ps => {
    ctx.beginPath()
    ctx.moveTo(ps[0].x, ps[0].y)
    ps.slice(1).forEach(({ x, y }) => ctx.lineTo(x,y))
    ctx.closePath()
    ctx.stroke()
  })
}
const binarize = (src, threshold) => {
  cv.cvtColor(src, src, cv.COLOR_RGB2GRAY, 0)
  const dst = new cv.Mat()
  src.convertTo(dst, cv.CV_8U)
  cv.threshold(src, dst, threshold, 255, cv.THRESH_BINARY_INV)
  cv.imshow('binary', dst)
  return dst
}
const flip = src => {
  const dst = new cv.Mat()
  cv.threshold(src, dst, 128, 255, cv.THRESH_BINARY_INV)
  cv.imshow('flip', dst)
  return dst
}
const dilate = (src) => {
  const dst = new cv.Mat()
  let M = cv.Mat.ones(3, 3, cv.CV_8U)
  let anchor = new cv.Point(-1, -1)
  cv.dilate(src, dst, M, anchor, 1, cv.BORDER_CONSTANT, cv.morphologyDefaultBorderValue())
  M.delete()
  cv.imshow('dilate', dst)
  return dst
}
const PARAMS = {
  threshold: 102,
  anchor: { x: 180, y: 180 },
  eps: 1e-2
}
const dumpParams = ({ threshold, anchor, eps }) => {
  document.querySelector('#params').innerHTML = `thres=${threshold} (x,y)=(${anchor.x}, ${anchor.y}) eps:${eps}`
}
document.querySelector('input[type=range]').onmouseup = e => {
  PARAMS.threshold = Math.round(parseInt(e.target.value, 10) / 100 * 255)
  dumpParams(PARAMS)
  runCv(PARAMS)
}
document.querySelector('input[type=value]').onchange = e => {
  PARAMS.eps = parseFloat(e.target.value)
  dumpParams(PARAMS)
  runCv(PARAMS)
}
document.querySelector('#imageSrc').onclick = e => {
  const rect = e.target.getBoundingClientRect()
  PARAMS.anchor = {
    x: e.clientX - rect.left,
    y: e.clientY - rect.top
  }
  dumpParams(PARAMS)
  runCv(PARAMS)
}
const contourToPoints = cnt => {
  const arr = []
  for (let j = 0; j < cnt.data32S.length; j += 2){
    let p = {}
    p.x = cnt.data32S[j]
    p.y = cnt.data32S[j+1]
    arr.push(p)
  }
  return arr
}
loadSomeImage()
dumpParams(PARAMS)
let CVREADY
const cvReady = new Promise((resolve, reject) => CVREADY = resolve)

const runCv = async ({ threshold, anchor, eps }) => {
  await cvReady
  const canvasFinal = document.querySelector('#final')
  const mat = cv.imread(document.querySelector('#imageSrc'))
  const binaryImg = binarize(mat, threshold, 'binary')
  const blurredImg = dilate(binaryImg)
  const flipImg = flip(blurredImg)
  var contours = new cv.MatVector()
  const hierarchy = new cv.Mat
  cv.findContours(flipImg, contours, hierarchy, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)

  const points = {}
  let matchingPoints = null
  let matchingContour = null
  for (let i = 0; i < contours.size(); ++i) {
  let minArea = 1e40
    const ci = contours.get(i)
    points[i] = contourToPoints(ci)
    if (anchor) {
      const point = new cv.Point(anchor.x, anchor.y)
      const inside = cv.pointPolygonTest(ci, point, false) >= 1
      const area = cv.contourArea(ci)
      if (inside && area < minArea) {
        matchingPoints = points[i]
        matchingContour = ci
        minArea = area
      }
    }
  }
  plotPoints(canvasFinal, points)

  if (anchor) {
    if (matchingPoints) {
      plotPoints(canvasFinal, [matchingPoints], 'red', true)
      if (eps) {
        const epsilon = eps * cv.arcLength(matchingContour, true)
        const approx = new cv.Mat()
        cv.approxPolyDP(matchingContour, approx, epsilon, true)
        const arr = contourToPoints(approx)
        console.log('polygon', arr)
        plotPoints(canvasFinal, [arr], 'blue', true)
      }
    }
  }
  mat.delete()
  contours.delete()
  hierarchy.delete()
  binaryImg.delete()
  blurredImg.delete()
  flipImg.delete()
}
function onOpenCvReady() {
  cv['onRuntimeInitialized'] = () => {console.log('cvready'); CVREADY(); runCv(PARAMS)}
}
// just so we can load async script
var script = document.createElement('script');
script.onload = onOpenCvReady
script.src = 'https://docs.opencv.org/master/opencv.js';
document.head.appendChild(script)
canvas{border: 1px solid black;}
  .debug{width: 200px; height: 200px;}
binarization threeshold<input type="range" min="0" max="100"/><br/>
eps(approxPolyDp) <input type="value" placeholder="0.01"/><br/>
params: <span id="params"></span><br/>
<br/>
<canvas id="imageSrc" height="400" width="400"/></canvas>
<canvas id="final" height="400" width="400"></canvas>
<br/>
<canvas class="debug" id="binary" height="400" width="400" title="binary"></canvas>
<canvas class="debug" id="dilate" height="400" width="400" title="dilate"></canvas>
<canvas class="debug" id="flip" height="400" width="400" title="flip"></canvas>

ps: 多边形在控制台输出


带面具的实施

编辑:在下面的片段中,我玩得更开心并实现了面具。我们可以制作片段 [整页] 然后将鼠标悬停在第一个 canvas.

// USE FIDDLE
// https://jsfiddle.net/c7xrq1uy/

async function loadSomeImage() {
  const ctx = document.querySelector('#imageSrc').getContext('2d')
  ctx.fillStyle = 'black'
  const img = new Image()
  img.crossOrigin = ''
  img.src = 'https://cors-anywhere.herokuapp.com/https://i.stack.imgur.com/aiZ7z.png'

  img.onload = () => {
    const imgwidth = img.offsetWidth
    const imgheight = img.offsetHeight
    ctx.drawImage(img, 0, 0, img.width, img.height, 0, 0, 400, 400) 
  }
}

function plotPoints(canvas, points, color = 'green', hold = false){
  const ctx = canvas.getContext('2d')
  !hold && ctx.clearRect(0, 0, 400, 400)
  ctx.strokeStyle = color

  Object.values(points).forEach(ps => {
    ctx.beginPath()
    ctx.moveTo(ps[0].x, ps[0].y)
    ps.slice(1).forEach(({ x, y }) => ctx.lineTo(x,y))
    ctx.closePath()
    ctx.stroke()
  })
}
const binarize = (src, threshold) => {
  cv.cvtColor(src, src, cv.COLOR_RGB2GRAY, 0)
  const dst = new cv.Mat()
  src.convertTo(dst, cv.CV_8U)
  cv.threshold(src, dst, threshold, 255, cv.THRESH_BINARY_INV)
  cv.imshow('binary', dst)
  return dst
}
const flip = src => {
  const dst = new cv.Mat()
  cv.threshold(src, dst, 128, 255, cv.THRESH_BINARY_INV)
  cv.imshow('flip', dst)
  return dst
}
const dilate = (src) => {
  const dst = new cv.Mat()
  let M = cv.Mat.ones(3, 3, cv.CV_8U)
  let anchor = new cv.Point(-1, -1)
  cv.dilate(src, dst, M, anchor, 1, cv.BORDER_CONSTANT, cv.morphologyDefaultBorderValue())
  M.delete()
  cv.imshow('dilate', dst)
  return dst
}
const PARAMS = {
  threshold: 102,
  anchor: { x: 180, y: 180 },
  eps: 1e-2,
  radius: 50
}
const dumpParams = ({ threshold, anchor, eps }) => {
  document.querySelector('#params').innerHTML = `thres=${threshold} (x,y)=(${anchor.x}, ${anchor.y}) eps:${eps}`
}
document.querySelector('input[type=range]').onmouseup = e => {
  PARAMS.threshold = Math.round(parseInt(e.target.value, 10) / 100 * 255)
  dumpParams(PARAMS)
  runCv(PARAMS)
}
document.querySelector('input[type=value]').onchange = e => {
  PARAMS.eps = parseFloat(e.target.value)
  dumpParams(PARAMS)
  runCv(PARAMS)
}
document.querySelector('#imageSrc').onclick = e => {
  const rect = e.target.getBoundingClientRect()
  PARAMS.anchor = {
    x: e.clientX - rect.left,
    y: e.clientY - rect.top
  }
  dumpParams(PARAMS)
  runCv(PARAMS)
}
// sorry for the globals, keep code simple
let DST = null
let MATCHING_CONTOUR = null
let DEBOUNCE = 0
document.querySelector('#imageSrc').onmousemove = e => {
  if (Date.now() - DEBOUNCE < 100) return
  if (!MATCHING_CONTOUR || !DST) { return }
  const rect = e.target.getBoundingClientRect()
  DEBOUNCE = Date.now()
  const x = e.clientX - rect.left
  const y = e.clientY - rect.top
  const dst = DST.clone()
  plotIntersectingMask(dst, MATCHING_CONTOUR, { anchor: { x, y }, radius: PARAMS.radius })
  dst.delete()
}
const contourToPoints = cnt => {
  const arr = []
  for (let j = 0; j < cnt.data32S.length; j += 2){
    let p = {}
    p.x = cnt.data32S[j]
    p.y = cnt.data32S[j+1]
    arr.push(p)
  }
  return arr
}
const plotIntersectingMask = (dst, cnt, { anchor, radius }) => {
  const { width, height } = dst.size()
  
  const contourMask = new cv.Mat.zeros(height, width, dst.type())
  const matVec = new cv.MatVector()
  matVec.push_back(cnt)
  cv.fillPoly(contourMask, matVec, [255, 255, 255, 255])

  const userCircle = new cv.Mat.zeros(height, width, dst.type())
  cv.circle(userCircle, new cv.Point(anchor.x, anchor.y), radius, [255, 128, 68, 255], -2)

  const commonMask = new cv.Mat.zeros(height, width, dst.type())
  cv.bitwise_and(contourMask, userCircle, commonMask)
  
  userCircle.copyTo(dst, commonMask)
  cv.imshow('final', dst)

  commonMask.delete()
  matVec.delete()
  contourMask.delete()
  userCircle.delete()
}
loadSomeImage()
dumpParams(PARAMS)
let CVREADY
const cvReady = new Promise((resolve, reject) => CVREADY = resolve)

const runCv = async ({ threshold, anchor, eps, radius }) => {
  await cvReady
  const canvasFinal = document.querySelector('#final')
  const mat = cv.imread(document.querySelector('#imageSrc'))
  const binaryImg = binarize(mat, threshold, 'binary')
  const blurredImg = dilate(binaryImg)
  const flipImg = flip(blurredImg)
  var contours = new cv.MatVector()
  const hierarchy = new cv.Mat
  cv.findContours(flipImg, contours, hierarchy, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)

  const points = {}
  let matchingPoints = null
  let matchingContour = null
  for (let i = 0; i < contours.size(); ++i) {
  let minArea = 1e40
    const ci = contours.get(i)
    points[i] = contourToPoints(ci)
    if (anchor) {
      const point = new cv.Point(anchor.x, anchor.y)
      const inside = cv.pointPolygonTest(ci, point, false) >= 1
      const area = cv.contourArea(ci)
      if (inside && area < minArea) {
        matchingPoints = points[i]
        matchingContour = ci
        minArea = area
      }
    }
  }
  plotPoints(canvasFinal, points)

  if (anchor) {
    if (matchingPoints) {
      MATCHING_CONTOUR = matchingContour
      plotPoints(canvasFinal, [matchingPoints], 'red', true)
      if (eps) {
        const epsilon = eps * cv.arcLength(matchingContour, true)
        const approx = new cv.Mat()
        cv.approxPolyDP(matchingContour, approx, epsilon, true)
        const arr = contourToPoints(approx)
        //console.log('polygon', arr)
        plotPoints(canvasFinal, [arr], 'blue', true)

        if (DST) DST.delete()
        DST = cv.imread(document.querySelector('#final'))
      }
    }
  }
  mat.delete()
  contours.delete()
  hierarchy.delete()
  binaryImg.delete()
  blurredImg.delete()
  flipImg.delete()
}
function onOpenCvReady() {
  cv['onRuntimeInitialized'] = () => {console.log('cvready'); CVREADY(); runCv(PARAMS)}
}
// just so we can load async script
var script = document.createElement('script');
script.onload = onOpenCvReady
script.src = 'https://docs.opencv.org/master/opencv.js';
document.head.appendChild(script)
  canvas{border: 1px solid black;}
  .debug{width: 200px; height: 200px;}
  #imageSrc{cursor: pointer;}
binarization threeshold<input type="range" min="0" max="100"/><br/>
eps(approxPolyDp) <input type="value" placeholder="0.01"/><br/>
params: <span id="params"></span><br/>
<br/>
<canvas id="imageSrc" height="400" width="400"/></canvas>
<canvas id="final" height="400" width="400"></canvas>
<br/>
<canvas class="debug" id="binary" height="400" width="400" title="binary"></canvas>
<canvas class="debug" id="dilate" height="400" width="400" title="dilate"></canvas>
<canvas class="debug" id="flip" height="400" width="400" title="flip"></canvas>