在 python 上实现永无止境的矩阵公式以进行曲线拟合
Implementing a never ending matrix formula on python for curve fitting
我正在尝试编写一个可以求解一般回归公式的程序:
So I'm trying to implement this matrix equation,有没有办法做到这一点,比如让用户决定它可以有多大,而不用我做越来越多的 if 条件(所以只有一段代码可以折叠成用户希望的矩阵)?
代码:
#Solving the general matrix for the coefficients
if 3 == n:
a = np.array([[np.sum(np.multiply(FL[1],FL[1])),np.sum(np.multiply(FL[1],FL[2]))],
[np.sum(np.multiply(FL[1],FL[2])),np.sum(np.multiply(FL[2],FL[2]))]])
b = np.array([np.sum(np.multiply(FL[0],FL[1])),np.sum(np.multiply(FL[0],FL[2]))])
x = np.linalg.solve(a, b)
if 4 == n:
a = np.array([[np.sum(np.multiply(FL[1],FL[1])),np.sum(np.multiply(FL[1],FL[2])),np.sum(np.multiply(FL[1],FL[3]))],
[np.sum(np.multiply(FL[1],FL[2])),np.sum(np.multiply(FL[2],FL[2])),np.sum(np.multiply(FL[2],FL[3]))],
[np.sum(np.multiply(FL[1],FL[3])),np.sum(np.multiply(FL[2],FL[3])),np.sum(np.multiply(FL[3],FL[3]))]])
b = np.array([np.sum(np.multiply(FL[0],FL[1])),np.sum(np.multiply(FL[0],FL[2])),np.sum(np.multiply(FL[0],FL[3]))])
x = np.linalg.solve(a, b)
1 这段代码中Phi_0对应FL[i=1],FL[0]对应y.
您可以使算法独立于多项式的阶数。最简单的方法是使用 for
循环,尽管它们会很慢(因为它们不利用 NumPy 的矢量化)。
这是一个带有随机数据的可重现示例:
import numpy as np
# Order of polynomial
n = 5
# Random seed for reproducibility
np.random.seed(1)
# Input arrays
phi = np.random.random((100,n))
y = np.random.random(100)
# Output arrays
a = np.zeros((n,n))
b = np.zeros(n)
for i in range(n):
b[i] = np.sum(y * phi[:,i])
for j in range(i,n):
# Exploit that matrix is diagonal
a[i,j] = a[j,i] = np.sum(phi[:,i] * phi[:,j])
# Coefficients array
x = np.linalg.solve(a,b)
我正在尝试编写一个可以求解一般回归公式的程序: So I'm trying to implement this matrix equation,有没有办法做到这一点,比如让用户决定它可以有多大,而不用我做越来越多的 if 条件(所以只有一段代码可以折叠成用户希望的矩阵)? 代码:
#Solving the general matrix for the coefficients
if 3 == n:
a = np.array([[np.sum(np.multiply(FL[1],FL[1])),np.sum(np.multiply(FL[1],FL[2]))],
[np.sum(np.multiply(FL[1],FL[2])),np.sum(np.multiply(FL[2],FL[2]))]])
b = np.array([np.sum(np.multiply(FL[0],FL[1])),np.sum(np.multiply(FL[0],FL[2]))])
x = np.linalg.solve(a, b)
if 4 == n:
a = np.array([[np.sum(np.multiply(FL[1],FL[1])),np.sum(np.multiply(FL[1],FL[2])),np.sum(np.multiply(FL[1],FL[3]))],
[np.sum(np.multiply(FL[1],FL[2])),np.sum(np.multiply(FL[2],FL[2])),np.sum(np.multiply(FL[2],FL[3]))],
[np.sum(np.multiply(FL[1],FL[3])),np.sum(np.multiply(FL[2],FL[3])),np.sum(np.multiply(FL[3],FL[3]))]])
b = np.array([np.sum(np.multiply(FL[0],FL[1])),np.sum(np.multiply(FL[0],FL[2])),np.sum(np.multiply(FL[0],FL[3]))])
x = np.linalg.solve(a, b)
1 这段代码中Phi_0对应FL[i=1],FL[0]对应y.
您可以使算法独立于多项式的阶数。最简单的方法是使用 for
循环,尽管它们会很慢(因为它们不利用 NumPy 的矢量化)。
这是一个带有随机数据的可重现示例:
import numpy as np
# Order of polynomial
n = 5
# Random seed for reproducibility
np.random.seed(1)
# Input arrays
phi = np.random.random((100,n))
y = np.random.random(100)
# Output arrays
a = np.zeros((n,n))
b = np.zeros(n)
for i in range(n):
b[i] = np.sum(y * phi[:,i])
for j in range(i,n):
# Exploit that matrix is diagonal
a[i,j] = a[j,i] = np.sum(phi[:,i] * phi[:,j])
# Coefficients array
x = np.linalg.solve(a,b)