如何将 predict.gam 与具有偏移量的 GAM 一起使用?

How do I use predict.gam with a GAM that has an offset?

我有一个如下所示的数据集:

structure(list(effort = c(2633, 7871, 10273, 
5202, 8550, 4698, 7357, 3670, 8933, 8301, 4416, 5355, 443, 8946, 
11168, 14572, 15552, 13947, 7969, 7541, 27478, 8698, 9044, 10803, 
29567, 9261, 1892, 8258, 9744, 5937, 11277, 7260, 6600, 1385, 
6959, 13788, 11792, 10363, 27837, 12622, 20954, 11912, 14986, 
14331, 14612, 7230, 25266, 25518, 8293, 6637, 9049, 6053, 6195, 
9957, 5039, 4840, 9757, 7760, 5836, 5741, 203, 5857, 4584, 5022, 
17794, 3499, 17010, 14025, 12059, 21645, 7174, 16150, 11445, 
12035, 24534, 6379, 11183, 6072, 10104, 6675, 14265, 9222, 9099, 
14397, 14097, 15684, 19315, 8753, 13876, 22169, 15724, 4688, 
21923, 16051, 8415, 6117, 11456, 10134, 5044, 19750, 10624, 9225, 
3935, 5995, 26458, 15806, 10188, 1641, 11402, 54, 7203, 9196, 
22643, 13905, 561, 7675, 6913, 7765, 11046, 9639, 10833, 16405, 
26188, 14262, 10092, 9834, 33753, 28133, 7095, 12020, 14248, 
10619, 8587, 11951, 8739, 10862, 4872, 6351, 2243, 5272, 2870, 
963, 18789, 20216, 17339, 20585, 16121, 8203, 11968, 7082, 12494, 
4731, 9975, 8863, 14946, 7321, 11694, 3228, 3375, 5607, 6223, 
10922, 5594, 604, 13512, 715, 16321, 5429, 15807, 17313, 3273, 
18884, 22627, 21474, 7898, 11273, 10482, 15778, 9962, 10997, 
12926, 8386, 11580, 10621, 3296, 8579, 14194, 9817, 7873, 8868, 
8093, 9366, 11594, 6801, 15844, 3426, 342, 13291, 7239, 6943, 
11958, 20140, 11373, 36384, 9897, 12543, 4293, 6691, 3176, 9847, 
1750, 794, 554, 6591, 14309, 2740, 6856, 8444, 3242, 2640, 8481, 
3197, 2332, 9287, 15318, 6410, 20876, 23016, 6741, 16704, 15311, 
7531, 8648, 2784, 7355, 8113, 13470, 11159, 14903, 8367, 7075, 
7312, 7496, 14094, 15349, 7191, 12474, 11323, 6793, 21977, 11888, 
17712, 4310, 6308, 16487, 19514, 9420, 6320, 7026, 1655, 7041, 
3070, 3533, 11043, 3843, 7483, 7150, 4463, 4319, 10384, 7579, 
8298, 2502, 4803, 8676, 16523, 10248, 5342, 4780, 3936, 17412, 
31632, 10323, 19263, 12757, 13171, 11301, 4273, 8657, 7512, 9319, 
9483, 3695, 4496, 7407, 26571, 5176, 2454, 9207, 9075, 16222, 
14280, 9963, 9426, 10864, 10627, 6665, 17141, 18597, 6093, 8094, 
4238), landings = c(116, 31, 0, 
0, 0, 0, 0, 0, 0, 120, 0, 241, 9, 0, 64, 326, 142, 605, 139, 
410, 212, 470, 416, 309, 1269, 474, 22, 135, 395, 464, 451, 32, 
2537, 210, 299, 1522, 184, 550, 666, 429, 1372, 184, 147, 1208, 
159, 951, 1000, 1100, 301, 144, 244, 0, 0, 281, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 42, 594, 26, 747, 436, 0, 914, 182, 8, 275, 175, 
766, 130, 930, 31, 177, 123, 895, 88, 107, 0, 4, 481, 909, 511, 
877, 402, 295, 336, 645, 310, 301, 398, 411, 0, 205, 293, 49, 
454, 162, 138, 1171, 0, 138, 0, 111, 0, 0, 36, 78, 114, 0, 0, 
134, 44, 549, 0, 378, 716, 739, 393, 203, 839, 70, 454, 132, 
651, 63, 1850, 217, 403, 55, 0, 408, 43, 17, 12, 26, 2, 811, 
581, 1216, 154, 1059, 89, 1862, 1310, 297, 29, 680, 0, 0, 29, 
0, 0, 0, 0, 0, 0, 17, 6, 0, 0, 0, 44, 909, 0, 0, 0, 194, 0, 212, 
18, 46, 44, 56, 365, 37, 0, 73, 11, 16, 19, 0, 0, 0, 23, 0, 92, 
0, 216, 0, 16, 0, 80, 319, 59, 35, 929, 47, 0, 0, 356, 0, 0, 
33, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 91, 362, 
0, 0, 0, 0, 0, 29, 0, 0, 392, 105, 0, 94, 15, 222, 34, 44, 178, 
1867, 0, 224, 241, 23, 1502, 492, 168, 0, 234, 299, 453, 0, 406, 
149, 0, 39, 57, 86, 0, 28, 23, 265, 0, 0, 0, 168, 31, 20, 0, 
28, 78, 244, 13, 0, 99, 168, 861, 52, 649, 0, 174, 0, 0, 2462, 
64, 178, 0, 61, 0, 321, 391, 33, 17, 227, 241, 248, 294, 1119, 
37, 90, 0, 85, 37, 89, 0, 0, 0),  month = c(1L, 
1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 
5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 
8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 
11L, 12L, 12L, 12L, 12L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 
3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 
6L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 
10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 
5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 
8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 
11L, 12L, 12L, 12L, 12L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 
6L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 
10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 
5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 
8L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 
12L, 12L, 12L, 12L, 12L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 
3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 
6L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 10L, 
10L, 10L, 10L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L), 
    Date = c(2014, 2014.01916495551, 2014.03832991102, 2014.05749486653, 
    2014.07665982204, 2014.09582477755, 2014.11498973306, 2014.13415468857, 
    2014.15331964408, 2014.17248459959, 2014.1916495551, 2014.21081451061, 
    2014.22997946612, 2014.24914442163, 2014.26830937714, 2014.28747433265, 
    2014.30663928816, 2014.32580424367, 2014.34496919918, 2014.36413415469, 
    2014.3832991102, 2014.40246406571, 2014.42162902122, 2014.44079397673, 
    2014.45995893224, 2014.47912388775, 2014.49828884326, 2014.51745379877, 
    2014.53661875428, 2014.55578370979, 2014.5749486653, 2014.59411362081, 
    2014.61327857632, 2014.63244353183, 2014.65160848734, 2014.67077344285, 
    2014.68993839836, 2014.70910335387, 2014.72826830938, 2014.74743326489, 
    2014.7665982204, 2014.78576317591, 2014.80492813142, 2014.82409308693, 
    2014.84325804244, 2014.86242299795, 2014.88158795346, 2014.90075290897, 
    2014.91991786448, 2014.93908281999, 2014.9582477755, 2014.97741273101, 
    2014.99657768652, 2015.01574264203, 2015.03490759754, 2015.05407255305, 
    2015.07323750856, 2015.09240246407, 2015.11156741958, 2015.13073237509, 
    2015.1498973306, 2015.16906228611, 2015.18822724162, 2015.20739219713, 
    2015.22655715264, 2015.24572210815, 2015.26488706366, 2015.28405201916, 
    2015.30321697467, 2015.32238193018, 2015.34154688569, 2015.3607118412, 
    2015.37987679671, 2015.39904175222, 2015.41820670773, 2015.43737166324, 
    2015.45653661875, 2015.47570157426, 2015.49486652977, 2015.51403148528, 
    2015.53319644079, 2015.5523613963, 2015.57152635181, 2015.59069130732, 
    2015.60985626283, 2015.62902121834, 2015.64818617385, 2015.66735112936, 
    2015.68651608487, 2015.70568104038, 2015.72484599589, 2015.7440109514, 
    2015.76317590691, 2015.78234086242, 2015.80150581793, 2015.82067077344, 
    2015.83983572895, 2015.85900068446, 2015.87816563997, 2015.89733059548, 
    2015.91649555099, 2015.9356605065, 2015.95482546201, 2015.97399041752, 
    2015.99315537303, 2016.01232032854, 2016.03148528405, 2016.05065023956, 
    2016.06981519507, 2016.08898015058, 2016.10814510609, 2016.1273100616, 
    2016.14647501711, 2016.16563997262, 2016.18480492813, 2016.20396988364, 
    2016.22313483915, 2016.24229979466, 2016.26146475017, 2016.28062970568, 
    2016.29979466119, 2016.3189596167, 2016.33812457221, 2016.35728952772, 
    2016.37645448323, 2016.39561943874, 2016.41478439425, 2016.43394934976, 
    2016.45311430527, 2016.47227926078, 2016.49144421629, 2016.5106091718, 
    2016.52977412731, 2016.54893908282, 2016.56810403833, 2016.58726899384, 
    2016.60643394935, 2016.62559890486, 2016.64476386037, 2016.66392881588, 
    2016.68309377139, 2016.7022587269, 2016.72142368241, 2016.74058863792, 
    2016.75975359343, 2016.77891854894, 2016.79808350445, 2016.81724845996, 
    2016.83641341547, 2016.85557837098, 2016.87474332649, 2016.893908282, 
    2016.91307323751, 2016.93223819302, 2016.95140314853, 2016.97056810404, 
    2016.98973305955, 2017.00889801506, 2017.02806297057, 2017.04722792608, 
    2017.06639288159, 2017.0855578371, 2017.10472279261, 2017.12388774812, 
    2017.14305270363, 2017.16221765914, 2017.18138261465, 2017.20054757016, 
    2017.21971252567, 2017.23887748118, 2017.25804243669, 2017.2772073922, 
    2017.29637234771, 2017.31553730322, 2017.33470225873, 2017.35386721424, 
    2017.37303216975, 2017.39219712526, 2017.41136208077, 2017.43052703628, 
    2017.44969199179, 2017.4688569473, 2017.48802190281, 2017.50718685832, 
    2017.52635181383, 2017.54551676934, 2017.56468172485, 2017.58384668036, 
    2017.60301163587, 2017.62217659138, 2017.64134154689, 2017.6605065024, 
    2017.67967145791, 2017.69883641342, 2017.71800136893, 2017.73716632444, 
    2017.75633127995, 2017.77549623546, 2017.79466119097, 2017.81382614648, 
    2017.83299110199, 2017.85215605749, 2017.871321013, 2017.89048596851, 
    2017.90965092402, 2017.92881587953, 2017.94798083504, 2017.96714579055, 
    2017.98631074606, 2018.00547570157, 2018.02464065708, 2018.04380561259, 
    2018.0629705681, 2018.08213552361, 2018.12046543463, 2018.13963039014, 
    2018.15879534565, 2018.17796030116, 2018.19712525667, 2018.21629021218, 
    2018.23545516769, 2018.2546201232, 2018.27378507871, 2018.29295003422, 
    2018.31211498973, 2018.33127994524, 2018.35044490075, 2018.36960985626, 
    2018.38877481177, 2018.40793976728, 2018.42710472279, 2018.4462696783, 
    2018.46543463381, 2018.48459958932, 2018.50376454483, 2018.52292950034, 
    2018.54209445585, 2018.56125941136, 2018.58042436687, 2018.59958932238, 
    2018.61875427789, 2018.6379192334, 2018.65708418891, 2018.67624914442, 
    2018.69541409993, 2018.71457905544, 2018.73374401095, 2018.75290896646, 
    2018.77207392197, 2018.79123887748, 2018.81040383299, 2018.8295687885, 
    2018.84873374401, 2018.86789869952, 2018.88706365503, 2018.90622861054, 
    2018.92539356605, 2018.94455852156, 2018.96372347707, 2018.98288843258, 
    2019.00205338809, 2019.0212183436, 2019.04038329911, 2019.05954825462, 
    2019.07871321013, 2019.09787816564, 2019.11704312115, 2019.13620807666, 
    2019.15537303217, 2019.17453798768, 2019.19370294319, 2019.2128678987, 
    2019.23203285421, 2019.25119780972, 2019.27036276523, 2019.28952772074, 
    2019.30869267625, 2019.32785763176, 2019.34702258727, 2019.36618754278, 
    2019.38535249829, 2019.4045174538, 2019.42368240931, 2019.44284736482, 
    2019.46201232033, 2019.48117727584, 2019.50034223135, 2019.51950718686, 
    2019.53867214237, 2019.55783709788, 2019.57700205339, 2019.5961670089, 
    2019.61533196441, 2019.63449691992, 2019.65366187543, 2019.67282683094, 
    2019.69199178645, 2019.71115674196, 2019.73032169747, 2019.74948665298, 
    2019.76865160849, 2019.787816564, 2019.80698151951, 2019.82614647502, 
    2019.84531143053, 2019.86447638604, 2019.88364134155, 2019.90280629706, 
    2019.92197125257, 2019.94113620808, 2019.96030116359, 2019.9794661191
    ))

我是 运行 长这样的 gam:

CSA1.offset.gam.week<-gam(landings~ s(Date, bs = "tp") + s(month, bs = "cc", k=12) + offset(log(effort)),
                           data = CSA1.effort.land.week2, family = nb, method="REML")

我希望使用 predict.gam() 在 ggplot 中绘制我的数据,但由于存在偏移而遇到问题。

当我像这样使用 predict.gam() 来为我的数据集添加拟合和 SE 时,它看起来像这样:

cbind(CSA1.effort.land.week2,
                          predict.gam(CSA1.offset.gam.week, 
                                  se.fit=TRUE,
                                  type="response",
                                  terms="s(Date)"))

当我绘制这个拟合时,它显示为一个极度锯齿状的线性模型。

当我删除偏移量时,我看到一个 GAM 与我期望的 GAM 外观一致,但我需要在我的数据中包含此偏移量。

这是没有偏移量的 GAM:

CSA1.offset.gam.week<-gam(landings~ s(Date, bs = "tp")+s(month, bs = "cc", k=12), 数据 = CSA1.effort.land.week2,family = nb, method="REML")

This is what that GAM looks like with the same predict.gam function as the previous example

如果我打算保留偏移量,我应该如何使用此 GAM 的 predict.gam 函数???

锯齿状来自使用不同(观察到的)努力值的预测。数据来自不同的努力,因此如果您想将模型输出与数据进行比较,则需要提供观察到的偏移量。

如果您想针对每次观察显示相同工作量的模型预测,在协变量范围内生成一些新数据并提供常数偏移量:

newd <- with(CSA1.effort.land.week2,
             data.frame(Date = seq(min(Date), max(Date), length = 1000),
                        effort = 1))
newd <- transform(newd, month = as.numeric(format(Date, format = "%m")))

(未测试;我现在远离使用 R 的计算机。)

但是不要指望这会接近数据,因为这将是一个苹果与橘子的比较,其原因与您首先使用偏移量对数据建模的原因相同。

对于 effort = 1predict() 给出的值的单位将是每单位努力的着陆点。如果您设置 effort = 10 它将是每 10 次努力的着陆次数。 effort 的测量单位将为您提供最终单位。如果 effort 以小时为单位,那么 effort = 10 的单位是每 10 小时的着陆次数。

当您像这样在计数模型中包含偏移量时,该模型将变为每单位费率 effort(在您的情况下)。因此,您可以付出任何努力从模型模型中获得预测计数,但如果您想在共同基础上比较预测计数,则需要将其作为常量提供。

我不知道你是如何创建显示的图的,但是 type = "response" 时不要使用标准错误;没错,只是在响应量表上创建置信区间没有用。如果您没有以这种方式建立信心 - 在 link 尺度上然后使用 link 函数的反函数转换回响应尺度 - 那么它可能是错误的。