Python中的'trust-constr'方法如何解决约束最小化问题中ValueError "expected square matrix"的问题?

How to solve the problem of the ValueError "expected square matrix" in a constrained minimization problem with the 'trust-constr' method in Python?

我想确定最小二乘问题的系数,其约束条件是系数之和为 1 且系数介于 0 和 1 之间。最小化的函数表示为函数 'forecast_combination' 和 objective 是确定 x。然而,'trust-constr' 方法分解了约束的雅可比行列式 (https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustconstr.html),这引发了 ValueError "expected square matrix"。我应该改变什么?

from scipy.optimize import LinearConstraint
from scipy.optimize import minimize
import numpy as np
import pandas as pd

def combination_jacobian(x, vDataOut, YPred1, YPred2):
    jac= np.zeros_like(x)
    jac[0] = np.sum(-2*np.multiply(YPred1, vDataOut - x[0]*YPred1 - x[1]*YPred2))
    jac[1] = np.sum(-2*np.multiply(YPred1, vDataOut - x[0]*YPred1 - x[1]*YPred2))
    print(jac)
    return jac

def combination_hessian(x, vDataOut, YPred1, YPred2):
    hess = np.zeros((len(x), len(x)))
    hess[0,0] = np.sum(YPred1**2)
    hess[0,1] = np.sum(YPred1*YPred2)
    hess[1,0] = np.sum(YPred1*YPred2)
    hess[1,1] = np.sum(YPred2**2)
    print(hess)
    return hess


def forecast_combination(x, vDataOut, YPred1, YPred2):
    return np.sum((vDataOut - x[0]*YPred1 - x[1]*YPred2)**2)

vDataOut = pd.DataFrame(np.ones((100, 1))+2).values
YPred1 = pd.DataFrame(np.ones((100, 1))+1).values
YPred2 = pd.DataFrame(np.ones((100, 1))+7).values

constrained_least_squares = minimize(fun = forecast_combination, x0 = np.array([0.5, 0.5]), method='trust-constr', args = (vDataOut, YPred1, YPred2), jac = combination_jacobian, hess = combination_hessian, constraints=[LinearConstraint([[1, 1]], [1], [1])],bounds=([0, 0], [1,1]), options={'factorization_method': None})
weights = constrained_least_squares.x

可以在 https://scipy.github.io/devdocs/tutorial/optimize.html#trust-region-constrained-algorithm-method-trust-constr 上找到更多详细信息。

使用因式分解方法'SVDFactorization',得到初始权重(不能是最小二乘权重)并且没有错误。

ValueError                                Traceback (most recent call last)
<ipython-input-48-cbfef6ae97b2> in <module>
----> 6 constrained_least_squares = minimize(fun = forecast_combination, x0 = np.array([0.5, 0.5]), method='trust-constr', args = (vDataOut, YPred1, YPred2), jac = combination_jacobian, hess = combination_hessian, constraints=[LinearConstraint([[1, 1]], [1], [1])],bounds=([0, 0], [1,1]), options={'factorization_method': None})


~\AppData\Local\Continuum\anaconda3\envs\thesis\lib\site-packages\scipy\optimize\_minimize.py in minimize(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)
    620         return _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp,
    621                                             bounds, constraints,
--> 622                                             callback=callback, **options)
    623     elif meth == 'dogleg':
    624         return _minimize_dogleg(fun, x0, args, jac, hess,

~\AppData\Local\Continuum\anaconda3\envs\thesis\lib\site-packages\scipy\optimize\_trustregion_constr\minimize_trustregion_constr.py in _minimize_trustregion_constr(fun, x0, args, grad, hess, hessp, bounds, constraints, xtol, gtol, barrier_tol, sparse_jacobian, callback, maxiter, verbose, finite_diff_rel_step, initial_constr_penalty, initial_tr_radius, initial_barrier_parameter, initial_barrier_tolerance, factorization_method, disp)
    503             stop_criteria, state,
    504             initial_constr_penalty, initial_tr_radius,
--> 505             factorization_method)
    506 
    507     elif method == 'tr_interior_point':

~\AppData\Local\Continuum\anaconda3\envs\thesis\lib\site-packages\scipy\optimize\_trustregion_constr\equality_constrained_sqp.py in equality_constrained_sqp(fun_and_constr, grad_and_jac, lagr_hess, x0, fun0, grad0, constr0, jac0, stop_criteria, state, initial_penalty, initial_trust_radius, factorization_method, trust_lb, trust_ub, scaling)
     79     S = scaling(x)
     80     # Get projections
---> 81     Z, LS, Y = projections(A, factorization_method)
     82     # Compute least-square lagrange multipliers
     83     v = -LS.dot(c)

~\AppData\Local\Continuum\anaconda3\envs\thesis\lib\site-packages\scipy\optimize\_trustregion_constr\projections.py in projections(A, method, orth_tol, max_refin, tol)
    400             = svd_factorization_projections(A, m, n, orth_tol, max_refin, tol)
    401 
--> 402     Z = LinearOperator((n, n), null_space)
    403     LS = LinearOperator((m, n), least_squares)
    404     Y = LinearOperator((n, m), row_space)

~\AppData\Local\Continuum\anaconda3\envs\thesis\lib\site-packages\scipy\sparse\linalg\interface.py in __init__(self, shape, matvec, rmatvec, matmat, dtype, rmatmat)
    516         self.__matmat_impl = matmat
    517 
--> 518         self._init_dtype()
    519 
    520     def _matmat(self, X):

~\AppData\Local\Continuum\anaconda3\envs\thesis\lib\site-packages\scipy\sparse\linalg\interface.py in _init_dtype(self)
    173         if self.dtype is None:
    174             v = np.zeros(self.shape[-1])
--> 175             self.dtype = np.asarray(self.matvec(v)).dtype
    176 
    177     def _matmat(self, X):

~\AppData\Local\Continuum\anaconda3\envs\thesis\lib\site-packages\scipy\sparse\linalg\interface.py in matvec(self, x)
    227             raise ValueError('dimension mismatch')
    228 
--> 229         y = self._matvec(x)
    230 
    231         if isinstance(x, np.matrix):

~\AppData\Local\Continuum\anaconda3\envs\thesis\lib\site-packages\scipy\sparse\linalg\interface.py in _matvec(self, x)
    525 
    526     def _matvec(self, x):
--> 527         return self.__matvec_impl(x)
    528 
    529     def _rmatvec(self, x):

~\AppData\Local\Continuum\anaconda3\envs\thesis\lib\site-packages\scipy\optimize\_trustregion_constr\projections.py in null_space(x)
    191         # v = P inv(R) Q.T x
    192         aux1 = Q.T.dot(x)
--> 193         aux2 = scipy.linalg.solve_triangular(R, aux1, lower=False)
    194         v = np.zeros(m)
    195         v[P] = aux2

~\AppData\Local\Continuum\anaconda3\envs\thesis\lib\site-packages\scipy\linalg\basic.py in solve_triangular(a, b, trans, lower, unit_diagonal, overwrite_b, debug, check_finite)
    336     b1 = _asarray_validated(b, check_finite=check_finite)
    337     if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
--> 338         raise ValueError('expected square matrix')
    339     if a1.shape[0] != b1.shape[0]:
    340         raise ValueError('incompatible dimensions')

ValueError: expected square matrix

我不知道确切的问题是什么,但我想提出重大更改建议。您适合 x[0]x[1],即 2 个参数。由于您强制 x[0]+x[1]=1.,因此问题是单个参数。您应该只查找 x[0] 并使用 x[1]=x[0]。这大大简化了您的任务。

编辑:

我已经更改:LinearConstraint([[1, 1]], [1], [1]) => LinearConstraint([[1, 1]], [0.99], [1.01]),错误消失了。

我将展示解决此问题的两种方法的代码:按照@rpoleski 的建议解决原始问题并转换问题以优化 1 个参数。

正如我在上面的评论中提到的,边界应该以不同的方式表述,最小化函数中的雅可比行列矩阵和海森矩阵不是最小化函数的雅可比行列矩阵和海森矩阵 ('forecast_combination'),但 Jacobian 和 Hessian 的约束。

import numpy as np
import pandas as pd

from scipy.optimize import LinearConstraint
from scipy.optimize import minimize
from scipy.optimize import Bounds

def forecast_combination(x, vDataOut, YPred1, YPred2):
    return np.sum((vDataOut - x[0]*YPred1 - x[1]*YPred2)**2)

vDataOut = pd.DataFrame(np.ones((100, 1))+2).values
YPred1 = pd.DataFrame(np.ones((100, 1))+1).values
YPred2 = pd.DataFrame(np.ones((100, 1))+7).values

constrained_least_squares = minimize(fun = forecast_combination, x0 = np.array([0.5, 0.5]), method='trust-constr', args = (vDataOut, YPred1, YPred2), constraints=[LinearConstraint([1, 1], [1], [1])],bounds=Bounds([0, 0], [1,1]))

weights = constrained_least_squares.x
print('Weights of forecast combination regression: ', weights)

当使用 x[1] = 1 - x[0] 时,得到相同的结果。

import numpy as np
import pandas as pd

from scipy.optimize import LinearConstraint
from scipy.optimize import minimize
from scipy.optimize import Bounds


def forecast_combination(x, vDataOut, YPred1, YPred2):
    return np.sum((vDataOut - x[0]*YPred1 - (1 - x[0])*YPred2)**2)

vDataOut = pd.DataFrame(np.ones((100, 1))+2).values
YPred1 = pd.DataFrame(np.ones((100, 1))+1).values
YPred2 = pd.DataFrame(np.ones((100, 1))+7).values

constrained_least_squares = minimize(fun = forecast_combination, x0 = np.array([0.5]), method='trust-constr', args = (vDataOut, YPred1, YPred2), bounds=Bounds([0],[1]))

weights = constrained_least_squares.x
print('Weights of forecast combination regression: ', weights)