ValueError: Found input variables with inconsistent numbers of samples: [2839, 14195]

ValueError: Found input variables with inconsistent numbers of samples: [2839, 14195]

在这个数据集之前所有以前的都工作正常,现在有了这个新数据集它引发了以下错误,我试图重塑 X_train 但它不属于 X_trian,任何人都可以帮助。谢谢

feature_df = pd.read_excel('thedatasets/boutput.xlsx')
    Y = pd.get_dummies(feature_df['class'],drop_first=True)
    X = feature_df.drop(['class'],axis=1)

以下代码在其他py文件中

for i in range(np.shape(generation)[0]):
            individual = generation[i, :]

            # Subset the columns based on this individual
            X_individual = self.dataset[[self.dataset.columns[j] for j in range(len(individual)) if individual[j] == 1]]

            # Split into train-test datasets
            X_train, X_test, y_train, y_test = train_test_split(X_individual, self.response, test_size=self.test_size)

            # Fit the classifier

            self.algorithm.fit(X_train, y_train.values.ravel())
            grid.fit(X_train,y_train.values.ravel())

错误:

Traceback (most recent call last):
  File "/Users/cinci/Desktop/SPLITPROJ/GeneticAlgorithmExample.py", line 57, in <module>
    main()
  File "/Users/cinci/Desktop/SPLITPROJ/GeneticAlgorithmExample.py", line 17, in main
    GA.fit()
  File "/Users/cinci/Desktop/SPLITPROJ/GeneticAlgorithm.py", line 167, in fit
    old_fitness_array = self.fitness(old_generation)
  File "/Users/cinci/Desktop/SPLITPROJ/GeneticAlgorithm.py", line 77, in fitness
    self.algorithm.fit(X_train, y_train.values.ravel())
  File "/Users/cinci/venv/lib/python3.7/site-packages/sklearn/svm/_base.py", line 148, in fit
    accept_large_sparse=True)
  File "/Users/cinci/venv/lib/python3.7/site-packages/sklearn/utils/validation.py", line 765, in check_X_y
    check_consistent_length(X, y)
  File "/Users/cinci/venv/lib/python3.7/site-packages/sklearn/utils/validation.py", line 212, in check_consistent_length
    " samples: %r" % [int(l) for l in lengths])
ValueError: Found input variables with inconsistent numbers of samples: [2839, 14195]

鉴于 14916 / 5 是 2839,我假设您出现问题的原因是您有多个输出标签(5 个标签)并且您使用的是 .ravel()

这将使您的数据变平,并且模型会认为您正在尝试传入 # of labels * number_of_training_examples 个示例作为您的训练示例。

要解决此问题,您应该重塑最终 y_train 而不是使用 .ravel() ,使其具有 number_of_training_examples x number_of_labels

的形状