我可以在 Python 中使用 LASSO 方法拟合 VAR 模型吗?

Can I fit a VAR model using the LASSO method in Python?

我要在一个VectorAutoregressive模型中拟合40个时间序列,大量的变量建议使用选择法。我很想使用 LASSO 方法,但我正在使用 statsmodel 进行拟合,并且使用该库实现 LASSO 的唯一方法是线性回归模型。有人可以帮忙吗?

你可以试试用fit_regularized,就像你拟合一个OLS,你把L1_wt设置为1,这样就是套索:

sm.OLS(..,..).fit_regularized(alpha=..,L1_wt=1)

我们可以举个例子,首先加载波士顿数据集:

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn import linear_model
from sklearn.metrics import mean_squared_error
import numpy as np
import statsmodels.api as sm

scaler = StandardScaler()
data = load_boston()
data_scaled  = scaler.fit_transform(data.data)
X_train, X_test, y_train, y_test = train_test_split(data_scaled, data.target, test_size=0.33, random_state=42)

下面显示它的工作原理类似,您需要调整模型中的收缩参数 alpha:

alphas = [0.0001,0.001, 0.01, 0.1,0.2, 0.5, 1]
mse_sklearn = []
mse_sm = []

for a in alphas:

    clf     = linear_model.Lasso(alpha=a)
    clf.fit(X_train, y_train)

    y_pred = clf.predict(X_test)
    mse_sklearn.append(mean_squared_error(y_test, y_pred))

    mdl = sm.OLS(y_train,sm.add_constant(X_train)).fit_regularized(alpha=a,L1_wt=1)
    y_pred = mdl.predict(sm.add_constant(X_test))
    mse_sm.append(mean_squared_error(y_test, y_pred))

可视化结果:

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot(alphas,mse_sm,label="sm")
ax.plot(alphas,mse_sklearn,label="sklearn")
ax.legend()