Dask:从提交的作业中访问已发布的数据集
Dask: Access published dataset from within a submitted job
# Init
import time
import pandas as pd
import numpy as np
from dask.distributed import Client
client = Client()
# Publish data
dataset_name = 'my_dataset'
df_my_dataset = pd.DataFrame(np.ones((2,3)), dtype=np.float32)
client.publish_dataset(df_my_dataset, name=dataset_name)
它在那里:
In [13]: client.list_datasets()
Out[13]: ('my_dataset',)
为 dask 创建提交功能。这里我想按名称访问已发布的数据集:
# submit function
def get_gate1_rows(df_from_submit):
return df_from_submit.mean()
# return df.mean() + my_dataset.mean() #### <<<<<<< How to do this?
最后提交:
# Submit code
df_zeros = np.zeros((2,3), dtype=np.float32)
future = client.submit(get_gate1_rows, df_zeros)
time.sleep(2)
result = future.result()
这会产生 - 但应该是 0.5
:
In [41]: result
Out[41]: 0.0
那么如何在 dask 作业中从访问published dataset
?
要在任务中访问已发布的数据集,您需要 get_client
:
def get_gate1_rows(df_from_submit):
client = distributed.get_client()
my_dataset = client.get_dataset('my_dataset')
return df_from_submit.mean() + my_dataset.mean()
(答案是三个1,因为df_zeros.mean()->0, df_my_dataset.mean()->1,1,1)
# Init
import time
import pandas as pd
import numpy as np
from dask.distributed import Client
client = Client()
# Publish data
dataset_name = 'my_dataset'
df_my_dataset = pd.DataFrame(np.ones((2,3)), dtype=np.float32)
client.publish_dataset(df_my_dataset, name=dataset_name)
它在那里:
In [13]: client.list_datasets()
Out[13]: ('my_dataset',)
为 dask 创建提交功能。这里我想按名称访问已发布的数据集:
# submit function
def get_gate1_rows(df_from_submit):
return df_from_submit.mean()
# return df.mean() + my_dataset.mean() #### <<<<<<< How to do this?
最后提交:
# Submit code
df_zeros = np.zeros((2,3), dtype=np.float32)
future = client.submit(get_gate1_rows, df_zeros)
time.sleep(2)
result = future.result()
这会产生 - 但应该是 0.5
:
In [41]: result
Out[41]: 0.0
那么如何在 dask 作业中从访问published dataset
?
要在任务中访问已发布的数据集,您需要 get_client
:
def get_gate1_rows(df_from_submit):
client = distributed.get_client()
my_dataset = client.get_dataset('my_dataset')
return df_from_submit.mean() + my_dataset.mean()
(答案是三个1,因为df_zeros.mean()->0, df_my_dataset.mean()->1,1,1)