从交叉验证计算 AUC 95% CI (Python, sklearn)
Calculation of AUC 95 % CI from Cross Validation (Python, sklearn)
我正在寻找根据我的 5 倍 CV 计算 AUC 95% CI 的正确方法。
n = 81 我的训练数据集
因此,如果我应用 5 倍 CV,其平均值约为 .测试组每折n = 16.
下面是我的 Python 代码。
folds = 5
seed = 42
# Grid Search
fit_intercept=[True, False]
C = [np.arange(1,41,1)]
penalty = ['l1', 'l2']
params = dict(C=C, fit_intercept = fit_intercept, penalty = penalty)
logreg = LogisticRegression(random_state = seed)
logreg_grid = GridSearchCV(logreg, param_grid = params , cv=folds, scoring='roc_auc', iid='False')
# fit the grid with data
logreg_grid.fit(X_train, y_train)
# fit best estimator
logreg = logreg_grid.best_estimator_
# Calculate AUC in 5-fold Stratified CV
logreg_scores = cross_val_score(logreg, X_train, y_train, cv=folds, scoring='roc_auc')
print('LogReg:',logreg_scores.mean())
# LogReg Scores: [0.95714286, 0.85, 0.98333333, 0.85, 0.56666667]
# Mean: 0.8414285714285714````
#AUC from LogReg = 0.8414
#Three ways I have tried to calculate the 95 % CI:
#LogReg Scores: [0.95714286, 0.85, 0.98333333, 0.85, 0.56666667]
# Mean: 0.8414285714285714
### First try ###
import statsmodels.stats.api as sms
conf = sms.DescrStatsW(logreg_scores).tconfint_mean(.05)
print(conf)
#Out: Lower 0.636, Upper: 1.047
### Second Try ###
import scipy.stats
def mean_confidence_interval(data, confidence=0.95):
a = 1.0 * np.array(data)
n = len(a)
m, se = np.mean(a), scipy.stats.sem(a)
h = se * scipy.stats.t.ppf((1 + confidence) / 2, n-1)
return m, m-h, m+h
mean_confidence_interval(logreg_scores, confidence=0.95)
#Out: Mid: 0.84, Lower: 0.64, Upper: 1.05)
### Third ###
# interval = t * np.sqrt( (AUC * (1 - AUC)) / n)
# n = 16 (validation set), because the mean in of alle 5 folds is 16 aof my n = 81
# t = 2.120 (Source: https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf)
interval = 2.120 * np.sqrt( (0.8414285714285714 * (1 - 0.8414285714285714)) / 16)
print((.84 + interval)*100)
print(.84)
print((.84 - interval)*100)
print(interval)
# Output: Lower: 64.64 , Mid: 0.84, Upper: 103.36 , Interval: 0.194
我的问题:所有结果看起来都很相似。但是,我做错了什么,因为我不明白 AUC 怎么会大于 1.0?
感谢您的阅览,期待您的解答
干杯米莎
我不确定它是否能解决您的问题,但我猜这是因为您正在对极小的样本量 (n=5) 应用 t 检验。预计会有很大的差异,这就是为什么 mean + SD > 1 在你的情况下。请注意,您所有的三种方法都是基于 t 检验的。
要获得足够数量的比较,您可能想尝试 1) 具有不同子类的多个重复 CV 或 2) bootstrappin。关于简历的一些有用的讨论:CV
田林禾的回答很有帮助!谢谢。
我是这样实现的:
from sklearn.model_selection import RepeatedStratifiedKFold
cv = RepeatedStratifiedKFold(n_splits = 5, n_repeats = 100, random_state = seed)
logreg_scores = cross_val_score(logreg, X_train, y_train, cv=cv, scoring='roc_auc')
print('LogReg:',logreg_scores.mean())
import scipy.stats
def mean_confidence_interval(data, confidence=0.95):
a = 1.0 * np.array(data)
n = len(a)
m, se = np.mean(a), scipy.stats.sem(a)
h = se * scipy.stats.t.ppf((1 + confidence) / 2, n-1)
return m, m-h, m+h
mean_confidence_interval(logreg_scores, confidence=0.95)
输出很棒,因为现在我有 500 个 AUC。 >>> (0.8014285714285716, 0.7921705464185262, 0.810686596438617)
但是我怎样才能实现这个概率呢?
y_pred = cross_val_predict(logreg, X_train, y_train, cv=cv, method='predict_proba')
如果我使用上面的代码,它会抛出一个错误:"cross_val_predict only works for partitions"
我正在寻找根据我的 5 倍 CV 计算 AUC 95% CI 的正确方法。
n = 81 我的训练数据集
因此,如果我应用 5 倍 CV,其平均值约为 .测试组每折n = 16.
下面是我的 Python 代码。
folds = 5
seed = 42
# Grid Search
fit_intercept=[True, False]
C = [np.arange(1,41,1)]
penalty = ['l1', 'l2']
params = dict(C=C, fit_intercept = fit_intercept, penalty = penalty)
logreg = LogisticRegression(random_state = seed)
logreg_grid = GridSearchCV(logreg, param_grid = params , cv=folds, scoring='roc_auc', iid='False')
# fit the grid with data
logreg_grid.fit(X_train, y_train)
# fit best estimator
logreg = logreg_grid.best_estimator_
# Calculate AUC in 5-fold Stratified CV
logreg_scores = cross_val_score(logreg, X_train, y_train, cv=folds, scoring='roc_auc')
print('LogReg:',logreg_scores.mean())
# LogReg Scores: [0.95714286, 0.85, 0.98333333, 0.85, 0.56666667]
# Mean: 0.8414285714285714````
#AUC from LogReg = 0.8414
#Three ways I have tried to calculate the 95 % CI:
#LogReg Scores: [0.95714286, 0.85, 0.98333333, 0.85, 0.56666667]
# Mean: 0.8414285714285714
### First try ###
import statsmodels.stats.api as sms
conf = sms.DescrStatsW(logreg_scores).tconfint_mean(.05)
print(conf)
#Out: Lower 0.636, Upper: 1.047
### Second Try ###
import scipy.stats
def mean_confidence_interval(data, confidence=0.95):
a = 1.0 * np.array(data)
n = len(a)
m, se = np.mean(a), scipy.stats.sem(a)
h = se * scipy.stats.t.ppf((1 + confidence) / 2, n-1)
return m, m-h, m+h
mean_confidence_interval(logreg_scores, confidence=0.95)
#Out: Mid: 0.84, Lower: 0.64, Upper: 1.05)
### Third ###
# interval = t * np.sqrt( (AUC * (1 - AUC)) / n)
# n = 16 (validation set), because the mean in of alle 5 folds is 16 aof my n = 81
# t = 2.120 (Source: https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf)
interval = 2.120 * np.sqrt( (0.8414285714285714 * (1 - 0.8414285714285714)) / 16)
print((.84 + interval)*100)
print(.84)
print((.84 - interval)*100)
print(interval)
# Output: Lower: 64.64 , Mid: 0.84, Upper: 103.36 , Interval: 0.194
我的问题:所有结果看起来都很相似。但是,我做错了什么,因为我不明白 AUC 怎么会大于 1.0?
感谢您的阅览,期待您的解答
干杯米莎
我不确定它是否能解决您的问题,但我猜这是因为您正在对极小的样本量 (n=5) 应用 t 检验。预计会有很大的差异,这就是为什么 mean + SD > 1 在你的情况下。请注意,您所有的三种方法都是基于 t 检验的。
要获得足够数量的比较,您可能想尝试 1) 具有不同子类的多个重复 CV 或 2) bootstrappin。关于简历的一些有用的讨论:CV
田林禾的回答很有帮助!谢谢。
我是这样实现的:
from sklearn.model_selection import RepeatedStratifiedKFold
cv = RepeatedStratifiedKFold(n_splits = 5, n_repeats = 100, random_state = seed)
logreg_scores = cross_val_score(logreg, X_train, y_train, cv=cv, scoring='roc_auc')
print('LogReg:',logreg_scores.mean())
import scipy.stats
def mean_confidence_interval(data, confidence=0.95):
a = 1.0 * np.array(data)
n = len(a)
m, se = np.mean(a), scipy.stats.sem(a)
h = se * scipy.stats.t.ppf((1 + confidence) / 2, n-1)
return m, m-h, m+h
mean_confidence_interval(logreg_scores, confidence=0.95)
输出很棒,因为现在我有 500 个 AUC。 >>> (0.8014285714285716, 0.7921705464185262, 0.810686596438617)
但是我怎样才能实现这个概率呢?
y_pred = cross_val_predict(logreg, X_train, y_train, cv=cv, method='predict_proba')
如果我使用上面的代码,它会抛出一个错误:"cross_val_predict only works for partitions"