什么可能导致 sparklyr 和 mleap ml_write_bundle 示例中的错误?

What could cause an error in sparklyr and mleap ml_write_bundle example?

我正在尝试遵循 RStudio-MLeap 示例 (https://github.com/rstudio/mleap),但在“ml_write_bundle()”处出现错误。有谁知道如何排除故障?

# The example code:

library(mleap)

library(sparklyr)

sc <- spark_connect(master = "local")

mtcars_tbl <- sdf_copy_to(sc, mtcars, overwrite = TRUE)

## Create a pipeline and fit it
pipeline <- ml_pipeline(sc) %>%
  ft_binarizer("hp", "big_hp", threshold = 100) %>%
  ft_vector_assembler(c("big_hp", "wt", "qsec"), "features") %>%
  ml_gbt_regressor(label_col = "mpg")

pipeline_model <- ml_fit(pipeline, mtcars_tbl)

## Export model
model_path <- file.path(tempdir(), "mtcars_model.zip")

ml_write_bundle(pipeline_model, sample_input = mtcars_tbl, path = model_path)
# my R console error is:

Error: java.lang.ClassNotFoundException: mleap.Main
    at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
    at java.lang.ClassLoader.loadClass(ClassLoader.java:418)
    at java.lang.ClassLoader.loadClass(ClassLoader.java:351)
    at java.lang.Class.forName0(Native Method)
    at java.lang.Class.forName(Class.java:264)
    at sparklyr.StreamHandler.handleMethodCall(stream.scala:106)
    at sparklyr.StreamHandler.read(stream.scala:61)
    at sparklyr.BackendHandler$$anonfun$channelRead0.apply$mcV$sp(handler.scala:58)
    at scala.util.control.Breaks.breakable(Breaks.scala:38)
    at sparklyr.BackendHandler.channelRead0(handler.scala:38)
    at sparklyr.BackendHandler.channelRead0(handler.scala:14)
    at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
    at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:102)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
    at io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:310)
    at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:284)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
    at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1359)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:935)
    at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:138)
    at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:645)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:580)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:497)
    at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:459)
    at io.netty.util.concurrent.SingleThreadEventExecutor.run(SingleThreadEventExecutor.java:858)
    at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:138)
    at java.lang.Thread.run(Thread.java:748)

对于这个例子,我在 macOS 10.15.4 上使用 spark-2.4.3-bin-hadoop2.7 和 mleap_1.0.0 sparklyr_1.2.0。

看来我只需要重新启动 R。我在为另一个版本的 spark (3.0.0-review2) 加载 mleap 库时遇到了其他问题,我把它搞混了。