使用来自 mlr 库的 knn 模型进行预测
Prediction with knn model from mlr library
如何使用新数据进行预测?我只能对数据集使用 predict()
函数。如果我有 x = 62.5
,我如何预测 y
的值?
library(mlr)
library(tidyverse)
x <- c(52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46)
y <- c(1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83)
dataset <- data.frame(x,y)
dataset <- as_tibble(dataset)
# (RE)DEFINING THE TASK ----
task <- makeRegrTask(data = dataset, target = "y")
# DEFINING THE K-NN LEARNER ----
kknn <- makeLearner("regr.kknn")
getParamSet(kknn)
kknnParamSpace <- makeParamSet(makeDiscreteParam("k", values = 1:10))
gridSearch <- makeTuneControlGrid()
kFold <- makeResampleDesc("CV", iters = 10)
tunedK <- tuneParams(kknn, task = task,
resampling = kFold,
par.set = kknnParamSpace,
control = gridSearch)
tunedK
knnTuningData <- generateHyperParsEffectData(tunedK)
plotHyperParsEffect(knnTuningData, x = "k", y = "mse.test.mean",
plot.type = "line") +
theme_bw()
# TRAINING FINAL MODEL WITH TUNED K ----
tunedKnn <- setHyperPars(makeLearner("regr.kknn"), par.vals = tunedK$x)
tunedKnnModel <- train(tunedKnn, task)
y<-predict(tunedKnnModel, task, type = "prob")
您可以为此使用 newdata
参数;参见 https://mlr.mlr-org.com/articles/tutorial/predict.html。
如何使用新数据进行预测?我只能对数据集使用 predict()
函数。如果我有 x = 62.5
,我如何预测 y
的值?
library(mlr)
library(tidyverse)
x <- c(52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46)
y <- c(1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83)
dataset <- data.frame(x,y)
dataset <- as_tibble(dataset)
# (RE)DEFINING THE TASK ----
task <- makeRegrTask(data = dataset, target = "y")
# DEFINING THE K-NN LEARNER ----
kknn <- makeLearner("regr.kknn")
getParamSet(kknn)
kknnParamSpace <- makeParamSet(makeDiscreteParam("k", values = 1:10))
gridSearch <- makeTuneControlGrid()
kFold <- makeResampleDesc("CV", iters = 10)
tunedK <- tuneParams(kknn, task = task,
resampling = kFold,
par.set = kknnParamSpace,
control = gridSearch)
tunedK
knnTuningData <- generateHyperParsEffectData(tunedK)
plotHyperParsEffect(knnTuningData, x = "k", y = "mse.test.mean",
plot.type = "line") +
theme_bw()
# TRAINING FINAL MODEL WITH TUNED K ----
tunedKnn <- setHyperPars(makeLearner("regr.kknn"), par.vals = tunedK$x)
tunedKnnModel <- train(tunedKnn, task)
y<-predict(tunedKnnModel, task, type = "prob")
您可以为此使用 newdata
参数;参见 https://mlr.mlr-org.com/articles/tutorial/predict.html。