如何构建 Etherscan 网络爬虫?

How to build Etherscan webscraper?

我正在构建一个 webscraper,它每 30 秒不断刷新一堆 etherscan URL,如果发生任何未考虑的新传输,它会向我发送电子邮件通知和 link 到 etherscan 上的相关地址,这样我就可以手动检查它们了。

我想密切关注的地址之一在这里:

https://etherscan.io/token/0xd6a55c63865affd67e2fb9f284f87b7a9e5ff3bd?a=0xd071f6e384cf271282fc37eb40456332307bb8af

到目前为止我做了什么:

from urllib.request import Request, urlopen
url = 'https://etherscan.io/token/0xd6a55c63865affd67e2fb9f284f87b7a9e5ff3bd?a=0x94f52b6520804eced0accad7ccb93c73523af089'
req = Request(url, headers={'User-Agent': 'XYZ/3.0'})   # I got this line from another post since "uClient = uReq(URL)" and "page_html = uClient.read()" would not work (I beleive that etherscan is attemption to block webscraping or something?)
response = urlopen(req, timeout=20).read()
response_close = urlopen(req, timeout=20).close()
page_soup = soup(response, "html.parser")
Transfers_info_table_1 = page_soup.find("div", {"class": "table-responsive"})
print(Transfers_info_table_1)

有趣的是,当我 运行 这个时,我得到以下输出:

<div class="table-responsive" style="visibility:hidden;">
<iframe frameborder="0" id="tokentxnsiframe" scrolling="no" src="" style="width: 100px; height: 600px; min-width: 100%;"></iframe>
</div>

我期望得到整个 table 传输的输出。我在这里做错了什么?

由于 table 存在于 iframe 中。复制 iframe 的 src 值,然后使用请求获取 url 的内容。

from urllib.request import Request, urlopen
from bs4 import BeautifulSoup as soup
import pandas as pd

url = 'https://etherscan.io/token/generic-tokentxns2?m=normal&contractAddress=0xd6a55c63865affd67e2fb9f284f87b7a9e5ff3bd&a=0xd071f6e384cf271282fc37eb40456332307bb8af'
req = Request(url, headers={'User-Agent':'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.106 Safari/537.36'})   # I got this line from another post since "uClient = uReq(URL)" and "page_html = uClient.read()" would not work (I beleive that etherscan is attemption to block webscraping or something?)
response = urlopen(req, timeout=20).read()
response_close = urlopen(req, timeout=20).close()
page_soup = soup(response, "html.parser")
Transfers_info_table_1 = page_soup.find("table", {"class": "table table-md-text-normal table-hover mb-4"})
df=pd.read_html(str(Transfers_info_table_1))[0]
df.to_csv("TransferTable.csv",index=False)

已生成 csv。