使用 LSTM 有状态传递上下文 b/w 批次;上下文传递可能有一些错误,没有得到好的结果?

Using LSTM stateful for passing context b/w batches; may be some error in context passing, not getting good results?

我已经检查过数据,然后再将其发送到网络。数据正确。

使用 LSTM 并传递上下文 b/w 批次。 per_class_accuracy在变化,但损失没有下降。卡了好久,不知道代码有没有错误?

我有多个class class基于不平衡数据集的化问题

Dataset_type:CSV

Dataset_size: 20000

基于传感器的 CSV 数据

X = 0.6986111111111111,0,0,1,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,1,0,0 ,0

Y = 离开家

每 class 准确度: {'leaveHouse':0.34932855,'getDressed':1.0,'idle':0.8074534,'prepareBreakfast':0.8,'goToBed':0.35583413,'getDrink':0.0,'takeShower': 1.0, 'useToilet': 0.0, 'eatBreakfast': 0.8857143}

培训:

# Using loss weights, the inverse of class frequency

criterion = nn.CrossEntropyLoss(weight = class_weights)

 hn, cn = model.init_hidden(batch_size)
            for i, (input, label) in enumerate(trainLoader):
                hn.detach_()
                cn.detach_()
                input = input.view(-1, seq_dim, input_dim)

                if torch.cuda.is_available():
                    input = input.float().cuda()
                    label = label.cuda()
                else:
                    input = input.float()
                    label = label

                # Forward pass to get output/logits
                output, (hn, cn) = model((input, (hn, cn)))

                # Calculate Loss: softmax --> cross entropy loss
                loss = criterion(output, label)#weig pram
                running_loss += loss
                loss.backward()  # Backward pass
                optimizer.step()  # Now we can do an optimizer step
                optimizer.zero_grad()  # Reset gradients tensors

网络


class LSTMModel(nn.Module):
    def init_hidden(self, batch_size):
        self.batch_size = batch_size
        if torch.cuda.is_available():
            hn = torch.zeros(self.layer_dim, self.batch_size, self.hidden_dim).cuda()
            # Initialize cell state
            cn = torch.zeros(self.layer_dim, self.batch_size, self.hidden_dim).cuda()
        else:
            hn = torch.zeros(self.layer_dim, self.batch_size, self.hidden_dim)
            # Initialize cell state
            cn = torch.zeros(self.layer_dim, self.batch_size, self.hidden_dim)
        return hn, cn

    def __init__(self, input_dim, hidden_dim, layer_dim, output_dim, seq_dim):
        super(LSTMModel, self).__init__()
        # Hidden dimensions
        self.hidden_dim = hidden_dim

        # Number of hidden layers
        self.layer_dim = layer_dim

        self.input_dim = input_dim
        # Building your LSTM
        # batch_first=True causes input/output tensors to be of shape
        # (batch_dim, seq_dim, feature_dim)
        self.lstm = nn.LSTM(self.input_dim, hidden_dim, layer_dim, batch_first=True)

        # Readout layer
        self.fc = nn.Linear(hidden_dim, output_dim)
        self.relu = nn.ReLU()
        self.softmax = nn.Softmax(dim=1)
        self.seq_dim = seq_dim

    def forward(self, inputs):
        # Initialize hidden state with zeros
        input, (hn, cn) = inputs
        input = input.view(-1, self.seq_dim, self.input_dim)

        # time steps
        out, (hn, cn) = self.lstm(input, (hn, cn))

        # Index hidden state of last time step
        out = self.fc(out[:, -1, :])
        out = self.softmax(out)
        return out, (hn,cn)

您可能遇到的一个问题是 CrossEntropyLoss 将对数 softmax 操作与负对数似然损失相结合,但您在模型中应用了 softmax。您应该将最后一层的原始 logits 传递给 CrossEntropyLoss.

此外,我不会说没有看到模型前向传递,但看起来您正在将维度 1 上的 softmax 应用于(我推断)具有形状 batch_size, sequence_length, output_dim 的张量,当你应该沿着输出暗淡应用它。