用于投资组合 beta 的 groupby rolling agg 自定义函数

groupby rolling agg custom function for portfolio beta

感谢您的阅读,并提前感谢您的任何回答。

Beta 是衡量投资组合系统风险的指标。它是通过将该投资组合 returns 与基准/市场的协方差除以市场的方差来计算的。我想对许多投资组合进行滚动计算。

我有一个df如下

PERIOD,PORT1,PORT2,BM
201504,-0.004,-0.001,-0.013
201505,0.017,0.019,0.022
201506,-0.027,-0.037,-0.039
201507,0.026,0.033,0.017
201508,-0.045,-0.054,-0.081
201509,-0.033,-0.026,-0.032
201510,0.053,0.07,0.09
201511,0.03,0.032,0.038
201512,-0.05,-0.034,-0.044
201601,-0.016,-0.043,-0.057
201602,-0.007,-0.007,-0.011
201603,0.014,0.014,0.026
201604,0.003,0.001,0.01
201605,0.046,0.038,0.031

除了 port1 和 port2 等更多列。

我想创建一个与 BM 列相比具有滚动 beta 的数据集。

我用

创建了一个类似的滚动相关数据集
df.rolling(3).corr(df['BM'])

...它获取了我的大集合中的每一列,并计算了与我的 BM 列的相关性。

我试图为 Beta 创建一个自定义函数,但因为它需要两个参数,所以我很费劲。下面是我的自定义函数,以及我如何通过为它提供两列 returns 来让它工作。

    def beta(arr1,arr2):
    #ddof = 0 gives population covar. the 0 and 1 coordinates take the arr1 vs arr2 covar from the matrix
    return (np.cov(arr1,arr2,ddof=0)[0][1])/np.var(arr2)

    beta_test = beta(df['PORT1'],df['BM'])

所以这可以帮助我找到我输入的两列之间的 beta...问题是如何对我上面的数据和包含许多 columns/portfolios 的数据执行此操作?然后如何在滚动的基础上做到这一点?从我上面看到的相关性来看,下面应该是可能的,运行 每列中的每个滚动 3 个月的数据集与一个指定的列。

beta_data = df.rolling(3).agg(beta(df['BM']))

任何正确方向的指示将不胜感激

def getbetas(df, market, window = 45):
    """ given an unstacked pandas dataframe (columns instruments, rows
    dates), compute the rolling betas vs the market.
    """
    nmarket = market/market.rolling(window).var()
    thebetas = df.rolling(window).cov(other=nmarket)
    return thebetas

IIUC,您可以 set_index PERIOD 和 BM 列,filter 包含 PORT 的列(如果您有其他列,您不想应用 beta 函数),然后使用 rolling.apply 像:

print (df.set_index(['PERIOD','BM']).filter(like='PORT')
         .rolling(3).apply(lambda x: beta(x, x.index.get_level_values(1)))
         .reset_index())
    PERIOD     BM     PORT1     PORT2
0   201504 -0.013       NaN       NaN
1   201505  0.022       NaN       NaN
2   201506 -0.039  0.714514  0.898613
3   201507  0.017  0.814734  1.055798
4   201508 -0.081  0.736486  0.907336
5   201509 -0.032  0.724490  0.887755
6   201510  0.090  0.598332  0.736964
7   201511  0.038  0.715848  0.789221
8   201512 -0.044  0.787248  0.778703
9   201601 -0.057  0.658877  0.794949
10  201602 -0.011  0.412270  0.789567
11  201603  0.026  0.354829  0.690573
12  201604  0.010  0.562924  0.558083
13  201605  0.031  1.716066  1.530471