如何从 shell 脚本捕获 Spark 错误

How to catch Spark error from shell script

我在 AWS Data Pipeline 中有一个管道运行名为 shell.sh:

的 shell 脚本
$ spark-submit transform_json.py


Running command on cluster...
[54.144.10.162] Running command...
[52.206.87.30] Running command...
[54.144.10.162] Command complete.
[52.206.87.30] Command complete.
run_command finished in 0:00:06.

AWS Data Pipeline 控制台显示作业是 "FINISHED",但在 stderr 日志中我看到作业实际上已中止:

Caused by: com.amazonaws.services.s3.model.AmazonS3Exception: Status Code: 404, AWS Service: Amazon S3, AWS Request ID: xxxxx, AWS Error Code: null, AWS Error Message: Not Found...        
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 5.0 failed 1 times, most recent failure: Lost task 0.0 in stage 5.0 (TID 5, localhost, executor driver): org.apache.spark.SparkException: Task failed while writing rows.
    ...
        20/05/22 11:42:47 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
        20/05/22 11:42:47 INFO MemoryStore: MemoryStore cleared
        20/05/22 11:42:47 INFO BlockManager: BlockManager stopped
        20/05/22 11:42:47 INFO BlockManagerMaster: BlockManagerMaster stopped
        20/05/22 11:42:47 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
        20/05/22 11:42:47 INFO SparkContext: Successfully stopped SparkContext
        20/05/22 11:42:47 INFO ShutdownHookManager: Shutdown hook called

我对数据管道和 Spark 有点陌生;无法理解幕后实际发生的事情。如何让 shell 脚本捕获 SparkException?

尝试像下面的例子...

您的 shell 脚本可以捕获这样的错误代码...其中非零退出代码是错误

$?是最近执行的命令的退出状态;按照惯例,0 表示成功,其他任何表示失败。


spark-submit transform_json.py


 ret_code=$?
   if [ $ret_code -ne 0 ]; then 
      exit $ret_code
   fi

您必须在错误情况下通过 sys.exit(-1) 编码为 return 退出代码。检查此 python 异常处理...

勾选这个Exit codes in Python