CVXOPT 似乎为这个简单的二次程序提供了非最优结果
CVXOPT seemingly provides non-optimal result for this simple quadratic program
我正在尝试使用 CVXOPT 求解一个简单的二次规划,但我很困扰,因为我可以猜测出比求解器提供的最优解更好的可行解。优化的形式为:
我会在最后给出P,q,G,h,A,b的定义。当我导入和 运行:
from cvxopt import matrix, spmatrix, solvers
# Code that creates matrices goes here
sol = solvers.qp(P, q, G, h, A, b)
结果是:
pcost dcost gap pres dres
0: 0.0000e+00 -5.5000e+00 6e+00 6e-17 4e+00
1: 0.0000e+00 -5.5000e-02 6e-02 1e-16 4e-02
2: 0.0000e+00 -5.5000e-04 6e-04 3e-16 4e-04
3: 0.0000e+00 -5.5000e-06 6e-06 1e-16 4e-06
4: 0.0000e+00 -5.5000e-08 6e-08 1e-16 4e-08
Optimal solution found.
Objective = 0.0
但是我可以定义一个可行的不同解决方案 guessed_solution
并进一步最小化 objective:
guessed_solution = matrix([0.5,0.5,0.0,0.0,0.0,0.0,0.5,0.5,0.0,0.0,1.0])
# Check Ax = b; want to see zeroes
print(A * guessed_solution - b)
>>>
[ 0.00e+00]
[ 0.00e+00]
[ 2.78e-17]
# Check Gx <= h; want to see non-positive entries
print(G * guessed_solution - h)
>>>
[-5.00e-01]
[-5.00e-01]
[ 0.00e+00]
[ 0.00e+00]
[ 0.00e+00]
[ 0.00e+00]
[-5.00e-01]
[-5.00e-01]
[-1.00e+00]
[-1.00e+00]
[ 0.00e+00]
[ 0.00e+00]
[ 0.00e+00]
[-1.00e+00]
# Check objective
print(guessed_solution.T * P * guessed_solution + q.T * guessed_solution)
>>>[-6.67e-01]
这导致 objective 为 -2/3,明显小于 0。我认为 Ax=b 测试中的 2.78e-17 错误不相关。
如能帮助解决此问题,我们将不胜感激!下面是代码中相关矩阵的定义(最大矩阵是11乘11)。
P = matrix([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0],[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0/3.0, 0.0, 2.0/3.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0/3.0, 2.0/3.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0],[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0/3.0, 0.0, -2.0/3.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0/3.0, -2.0/3.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]).T
q = matrix([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
A = matrix([[0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],[0.0, 1.0, 1.0/3.0, 2.0/3.0, 0.0, -1.0, -1.0/3.0, -2.0/3.0, 0.0, 0.0, 0.0]]).T
b = matrix([1.0, 1.0, 0.0])
G = spmatrix([-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0], [0,1,2,3,4,5,6,7,8,9,10,11,12,13], [0,1,2,3,4,5,6,7,8,9,10,8,9,10])
h = matrix([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0])
您的二次型在假设方面无效。
它需要是 PSD(并且是对称的)。
使其对称:
P = (P + P.T) / 2
会导致cvxopt报错,这是因为P不定:
import numpy as np
np_matrix = np.array(P)
print(np.linalg.eigvalsh(np_matrix))
#[-8.16496581e-01 -7.45355992e-01 -5.77350269e-01 -2.40008780e-16 -6.33511351e-17 -4.59089160e-17 -3.94415555e-22 5.54077304e-17 5.77350269e-01 7.45355992e-01 8.16496581e-01]
你得到了一个为凸优化问题设计的求解器(当且仅当 P 是 PSD),由一些非凸优化问题提供。这不会起作用(通常)。
我正在尝试使用 CVXOPT 求解一个简单的二次规划,但我很困扰,因为我可以猜测出比求解器提供的最优解更好的可行解。优化的形式为:
我会在最后给出P,q,G,h,A,b的定义。当我导入和 运行:
from cvxopt import matrix, spmatrix, solvers
# Code that creates matrices goes here
sol = solvers.qp(P, q, G, h, A, b)
结果是:
pcost dcost gap pres dres
0: 0.0000e+00 -5.5000e+00 6e+00 6e-17 4e+00
1: 0.0000e+00 -5.5000e-02 6e-02 1e-16 4e-02
2: 0.0000e+00 -5.5000e-04 6e-04 3e-16 4e-04
3: 0.0000e+00 -5.5000e-06 6e-06 1e-16 4e-06
4: 0.0000e+00 -5.5000e-08 6e-08 1e-16 4e-08
Optimal solution found.
Objective = 0.0
但是我可以定义一个可行的不同解决方案 guessed_solution
并进一步最小化 objective:
guessed_solution = matrix([0.5,0.5,0.0,0.0,0.0,0.0,0.5,0.5,0.0,0.0,1.0])
# Check Ax = b; want to see zeroes
print(A * guessed_solution - b)
>>>
[ 0.00e+00]
[ 0.00e+00]
[ 2.78e-17]
# Check Gx <= h; want to see non-positive entries
print(G * guessed_solution - h)
>>>
[-5.00e-01]
[-5.00e-01]
[ 0.00e+00]
[ 0.00e+00]
[ 0.00e+00]
[ 0.00e+00]
[-5.00e-01]
[-5.00e-01]
[-1.00e+00]
[-1.00e+00]
[ 0.00e+00]
[ 0.00e+00]
[ 0.00e+00]
[-1.00e+00]
# Check objective
print(guessed_solution.T * P * guessed_solution + q.T * guessed_solution)
>>>[-6.67e-01]
这导致 objective 为 -2/3,明显小于 0。我认为 Ax=b 测试中的 2.78e-17 错误不相关。
如能帮助解决此问题,我们将不胜感激!下面是代码中相关矩阵的定义(最大矩阵是11乘11)。
P = matrix([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0],[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0/3.0, 0.0, 2.0/3.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0/3.0, 2.0/3.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0],[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0/3.0, 0.0, -2.0/3.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0/3.0, -2.0/3.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]).T
q = matrix([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
A = matrix([[0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],[0.0, 1.0, 1.0/3.0, 2.0/3.0, 0.0, -1.0, -1.0/3.0, -2.0/3.0, 0.0, 0.0, 0.0]]).T
b = matrix([1.0, 1.0, 0.0])
G = spmatrix([-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0], [0,1,2,3,4,5,6,7,8,9,10,11,12,13], [0,1,2,3,4,5,6,7,8,9,10,8,9,10])
h = matrix([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0])
您的二次型在假设方面无效。
它需要是 PSD(并且是对称的)。
使其对称:
P = (P + P.T) / 2
会导致cvxopt报错,这是因为P不定:
import numpy as np
np_matrix = np.array(P)
print(np.linalg.eigvalsh(np_matrix))
#[-8.16496581e-01 -7.45355992e-01 -5.77350269e-01 -2.40008780e-16 -6.33511351e-17 -4.59089160e-17 -3.94415555e-22 5.54077304e-17 5.77350269e-01 7.45355992e-01 8.16496581e-01]
你得到了一个为凸优化问题设计的求解器(当且仅当 P 是 PSD),由一些非凸优化问题提供。这不会起作用(通常)。