我如何查找 parents 包含他们自己的代码作为 child?

How do I look for parents containing their own code as child?

我有 tree-like 数据由 Parent 代码构成,这些代码包含 Child 代码,这些代码本身可以充当 parent,具体取决于它们是否被标记作为 "SA"。此数据存在于 Excel sheet 中,如下所示:

| Tree Level (A) | Code (B) | Spec (C) | Comm. Code (D) | Parent Code (J) |
|----------------|----------|----------|----------------|-----------------|
|              1 | A12      |        1 | SA             | Mach            |
|              2 | B41      |        2 | SA             | A12             |
|              3 | A523     |        1 | BP             | B41             |
|              2 | G32      |        4 | BP             | A12             |
|              2 | D3F5     |        1 | SA             | A12             |
|              3 | A12      |        4 | SA             | D3F5            |
|              3 | A12      |        1 | SA             | D3F5            |

这里有一个问题:A12,在树的顶层 (1),包含一个 child (D3F5),它本身包含另一个 parent,与 D3F5 自己的 parent。正如您可能想象的那样,这(虽然没有在交付给我的数据中表示)创建了一个无限循环,其中树级别 3 的 A12 一次又一次地展开整个结构。

请注意,两个 'A12' children 中的一个没有问题,因为它与树级别 1 的 A12 parent 有不同的规格。

我有一个函数可以检查这种情况,但它非常慢,因为它使用嵌套循环遍历行,总行数可能有数千行。最终目标是向用户展示错误发生的最深层次。在此示例中,代码 A12 和规范 1 在树级别 3:

def nested_parent(sht):
    """
    Checks if a parent SA contains itself as a child.
    :return: nested_parents: Dictionary of found 'nested parents'. None if none found
    """
    nested_parents = {}
    found = False

    lrow = sht.Cells(sht.Rows.Count, 1).End(3).Row
    parent_treelevel = 1

    # Get deepest tree level, as this no longer contains children
    last_treelevel = int(max([i[0] for i in sht.Range(sht.Cells(2, 1), sht.Cells(lrow, 1)).Value]))

    # Loop through parent rows
    print('Checking for nested parents...')
    for i in range(2, lrow):
        if sht.Cells(i, "D").Value == "SA":
            parent_code, parent_treelevel = f'{sht.Cells(i, "B").Value}_{sht.Cells(i, "C")}', sht.Cells(i, "A").Value

            # Add new key with list containing parent's tree level for parent code
            if parent_code not in nested_parents:
                nested_parents[parent_code] = [int(parent_treelevel)]

            # Loop child rows
            for j in range(i + 1, lrow + 1):
                child_code, child_treelevel = f'{sht.Cells(j, "B").Value}_{sht.Cells(j, "C")}', sht.Cells(i, "A").Value

                if child_code == parent_code and child_treelevel > parent_treelevel:
                    found = True
                    nested_parents[parent_code].append(int(child_treelevel))

        if parent_treelevel == last_treelevel:
            # End function if deepst tree level is reached
            print("done")
            if found:
                # Delete keys that contain no information
                delkeys = []
                for key in reversed(nested_parents):
                    if len(nested_parents[key]) == 1:
                        delkeys.append(key)
                for key in delkeys:
                    del nested_parents[key]
                return nested_parents
            else:
                return

这个函数可以按如下方式调用,其中wb_name是包含数据的工作簿的名称:

from win32com.client import GetObject
wb_name = "NAME"
sht = GetObject(None, "Excel.Application").Workbooks(wb_name).Worksheets(1)


def err(msg):
    """
    stops the code from executing after printing an error message
    """
    print("Unexpected error occured:", msg)
    exit()


infloop = nested_parent(sht)
if infloop is not None:
    dict_str = ''.join([f'Code: {key}, Tree levels: {infloop[key]}\n' for key in infloop])
    err(f"Warning: one or more parent codes contain their own code as a child:\n{dict_str}")

我希望加快这段代码的速度,因为我的脚本的其余部分相当快,但它的速度受到此函数的严重阻碍。

我希望此回复有助于展示分层数据结构的强大功能。我所做的是将数据重写为 json 字符串,然后编写代码遍历层次结构并生成报告。您仍然需要将 excel 转换为 json。要点是 json 的每个级别都有相同的键,并且 children 中的每个 child 都具有与其 parent 字典相同的键,因此启用遍历结构的递归函数。我做了按代码或级别汇总的示例。

import json 
json_data = """
{
    "level": 0,
    "code": "Mach",
    "children": [
        {
            "level": 1,
            "code": "A12",
            "children": [
                {
                    "level": 2,
                    "code": "B41",
                    "children": [
                        {
                            "level": 3,
                            "code": "A523",
                            "children": []
                        }
                    ]
                },
                {
                    "level": 2,
                    "code": "G32",
                    "children": []
                },
                {
                    "level": 2,
                    "code": "D3F5",
                    "children": [
                        {
                            "level": 3,
                            "code": "A12",
                            "children": []
                        },
                        {
                            "level": 3,
                            "code": "A12",
                            "children": []
                        }
                    ]
                }
            ]
        }
    ]
}
"""

data = json.loads(json_data)

def crawl_levels(mydict, result={}):
    try:
        result[mydict["level"]].append(mydict["code"])
    except:
        result[mydict["level"]] = [mydict["code"],]

    for i in mydict["children"]:
        result = crawl_levels(i, result=result)
    return result

crawl_levels(data) 
>>>{0: ['Mach'], 1: ['A12'], 2: ['B41', 'G32', 'D3F5'], 3: ['A523', 'A12', 'A12']}

def crawl_codes(mydict, result={}):
    try:
        result[mydict["code"]].append(mydict["level"])
    except:
        result[mydict["code"]] = [mydict["level"],]

    for i in mydict["children"]:
        result = crawl_codes(i, result=result)
    return result

crawl_codes(data) 
>>>{'Mach': [0],
 'A12': [1, 3, 3],
 'B41': [2],
 'A523': [3],
 'G32': [2],
 'D3F5': [2]}

正如@a'r 提到的,您的 "tree like data" 可以看作是一个有向图,即用箭头(有向边)连接的点(节点)。有一个名为 networkx 的非常强大的库可以很好地处理图形。在不深入研究图论的情况下,请考虑以下代码示例:

import networkx as nx

edges = [ ('A12', 'Mach'), 
          ('B41', 'A12'),
          ('A523','B41'),
          ('G32', 'A12'),
          ('D3F5','A12'),
          ('A12', 'D3F5'),
          ('A12', 'D3F5') ]

G = nx.DiGraph(edges)
cycles_list = list(nx.simple_cycles(G))
print(cycles_list)

输出:

[['A12', 'D3F5']]

这里的节点名称是您阅读时的代码本身,边是 child 和 parent 之间的连接。您只需获取 Excel 文件的相应列即可轻松创建边列表。在这种情况下,确切的方向(parent 到 child 或相反)不是很重要,只要保持一致即可。

simple_cycles returns 一台发电机。在这里你可以找到它上面的documentation

更新

获得循环列表后,要找到最深的节点,您需要匹配该节点并找到它最深的外观。

从 A、B 和 J 列创建一个节点列表。它看起来像:

data = [
   [1, 'A12', 'Mach'],
   [2, 'B41', 'A12'],
   [3, 'A523', 'B41'],
   [2, 'G32', 'A12'],
   [2, 'D3F5', 'A12'],
   [3, 'A12', 'D3F5'],
   [3, 'A12', 'D3F5'] ]

result = {}
for entry in data:
    for el in cycles_list:
        if entry[1:] == el:
            key = tuple(el)
            result[key] = max(result.setdefault(key, 0), entry[0])
print(result)

>>>
{('A12', 'D3F5'): 3}

现在你会得到一个字典,其中键是有问题的节点,值是它可以找到的最深层次。