在实时对象检测器中保存图像
Saving image in a real time object detector
我目前是 运行 在 TensorFlow 中使用 SSD MobileNetv2 的实时对象检测器 1.x 并且想知道是否有任何方法可以在其中一个 class 被视频流检测到。
PATH_TO_FROZEN_GRAPH = 'path-to-inference-graph.pb'
PATH_TO_LABEL_MAP = 'path-to-label-map.pbtxt'
NUM_CLASSES = 4
cap = cv2.VideoCapture(0)
基本上,我已经构建了检测器来检测 4 classes 并且想在其中一个 class 被检测到。
label_map = label_map_util.load_labelmap(PATH_TO_LABEL_MAP)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True:
ret, image_np = cap.read()
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=3,
)
cv2.imshow('Detection', cv2.resize(image_np, (1200, 800)))
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
如何实现?它还有其他变化吗?
在 session.run 之后,您会在 (boxes, scores, classes, num_detections)
中得到结果
您只需遍历它们并查看 class 和得分,最后保存
if 'req_class_name' in classes:
#check for confidence score also
cv2.imwrite('/path/to/destination/image.png', image_np)
我目前是 运行 在 TensorFlow 中使用 SSD MobileNetv2 的实时对象检测器 1.x 并且想知道是否有任何方法可以在其中一个 class 被视频流检测到。
PATH_TO_FROZEN_GRAPH = 'path-to-inference-graph.pb'
PATH_TO_LABEL_MAP = 'path-to-label-map.pbtxt'
NUM_CLASSES = 4
cap = cv2.VideoCapture(0)
基本上,我已经构建了检测器来检测 4 classes 并且想在其中一个 class 被检测到。
label_map = label_map_util.load_labelmap(PATH_TO_LABEL_MAP)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True:
ret, image_np = cap.read()
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=3,
)
cv2.imshow('Detection', cv2.resize(image_np, (1200, 800)))
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
如何实现?它还有其他变化吗?
在 session.run 之后,您会在 (boxes, scores, classes, num_detections)
中得到结果您只需遍历它们并查看 class 和得分,最后保存
if 'req_class_name' in classes:
#check for confidence score also
cv2.imwrite('/path/to/destination/image.png', image_np)