高损失验证
High Loss Validation
我使用以下模型来预测比赛:"intel-mobileodt-cervical-cancer-screening"。
标签分为3类(1 ,2 ,3).
当我想进行预测训练时,我会得到下一个输出
型号:
resnet50 = pretrainedmodels.__dict__["resnet50"](num_classes=1000, pretrained='imagenet')
resnet50.last_linear=torch.nn.Linear(in_features=2048,out_features=3, bias=True)
#optim
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model=model.to(device)
loss_cross=torch.nn.CrossEntropyLoss().cuda()
优化亚当
数据加载器:
class Kaggle_Cancer(Dataset):
def __init__(self, root_path, transform=None,preprocessing=None,resize=216):
self.path = root_path
self.transform=transform
self.preprocessing=preprocessing
self.resize=resize
def __len__(self):
return len(self.path)
def __getitem__(self, idx):
p=self.path[idx]
image1=cv2.imread(p)
label=p.split("/")[-2].split("_")[-1]
image1=cv2.cvtColor(image1,cv2.COLOR_BGR2RGB)
if self.transform:
image1=self.transform(image=image1)['image']
image1=transforms.ToPILImage()(image1)
image1=transforms.ToTensor()(image1)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
image1=normalize(image1)
return image1,int(label)
火车:
def train(epoch_number,model,optim,loss):
model.train()
all_loss=0
correct=0
tqdm_loader=tqdm(training_set)
for index,(img,target) in enumerate(tqdm_loader):
img=img.float().cuda()
target=target.long().cuda()
optim.zero_grad()
out=model(img)
print(out," target ",target)
loss1=loss(out,target)
print(loss1)
loss1.backward()
optim.step()
all_loss+=loss1.item()
avg_loss=all_loss/(index+1)
pred=out.argmax(dim=1,keepdim=True)
correct+=pred.eq(target.view_as(pred)).sum().item()/len(target)
avg_acc=correct/(index+1)
tqdm_loader.set_description("Epoch {} train loss={:4} acc={:4} ".format(epoch_number,round(avg_loss,4),round(avg_acc,4)))
return avg_loss,avg_acc
输出:
打印(输出,“目标”,目标)
,
[ 6.1667e-02, -3.9864e-01, -4.1212e-01],
[-2.3100e-01, -3.7821e-01, -2.8159e-01],
[-2.9442e-01, -5.0409e-01, -3.1046e-01],
[ 1.4866e-01, -2.8496e-01, -1.7643e-01],
[-2.4554e-01, -2.5063e-01, -6.7061e-01],
[-7.1597e-02, -3.5376e-01, -5.7830e-01],
[-2.1527e-01, -4.0284e-01, -4.5993e-01],
[ 1.2050e-02, -5.5684e-01, -1.6044e-01],
[-3.7750e-02, -5.3680e-01, -4.3820e-01],
[-1.1966e-01, -2.5146e-01, -4.9405e-01],
[-2.3308e-01, -6.3452e-01, -3.9821e-01],
[-3.6530e-01, -1.5242e-01, -2.6457e-01],
[-1.8864e-01, -6.0979e-01, -5.5342e-01],
[-2.4755e-01, -4.7011e-01, -2.6204e-01],
[-3.1907e-01, -4.2680e-01, -3.4576e-01],
[-2.1872e-01, -5.3857e-01, -2.9729e-01],
[-7.1475e-02, -4.0458e-01, -3.2042e-01],
[-2.8925e-01, -4.3376e-02, -4.9899e-01],
[-4.8227e-02, -1.8701e-01, -2.2106e-01],
[ 1.7829e-02, -6.5816e-01, -4.0141e-01],
[-2.7450e-01, -3.9498e-01, -2.3189e-01],
[-1.8847e-01, -6.8187e-01, -2.0631e-01],
[-3.5251e-01, -5.3258e-01, -6.3298e-01],
[-6.5548e-02, -2.5093e-01, -5.4346e-01],
[ 2.3848e-01, -3.6152e-01, -1.6380e-01],
[-2.1488e-01, -6.4888e-01, -7.7022e-01],.....
target tensor([2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 3, 2, 3, 2, 2, 2, 2, 3, 2, 1, 3, 3, 2, 2,
3, 2, 3, 2, 3, 1, 3, 3, 1, 2, 3, 2, 1, 1, 3, 1, 1, 2, 3, 2, 2, 2, 2, 2,.....
打印(loss1)
1, 2, 3, 3, 1, 3, 1, 3, 3, 2, 3, 3, 2, 3, 2, 3], device='cuda:0'
tensor(1.0870, device='cuda:0', grad_fn=<NllLossBackward>
纪元数=10/20/30:
同样的结果:
val loss=1.2 acc=0.4 train loss=0.6 acc=0.65
我做错了什么?
当验证损失大于训练损失时,通常是过拟合的标志。您可以做的事情很少:
- 添加批量归一化的丢弃:
这使模型更加稳健。
- 使模型更深:
向模型添加更多层以更好地理解模式。
- 使用更好的优化器:
Adam、Adagrad 和 RMSprop 等自适应优化器通常很有效。
我使用以下模型来预测比赛:"intel-mobileodt-cervical-cancer-screening"。 标签分为3类(1 ,2 ,3).
当我想进行预测训练时,我会得到下一个输出
型号:
resnet50 = pretrainedmodels.__dict__["resnet50"](num_classes=1000, pretrained='imagenet')
resnet50.last_linear=torch.nn.Linear(in_features=2048,out_features=3, bias=True)
#optim
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model=model.to(device)
loss_cross=torch.nn.CrossEntropyLoss().cuda()
优化亚当
数据加载器:
class Kaggle_Cancer(Dataset):
def __init__(self, root_path, transform=None,preprocessing=None,resize=216):
self.path = root_path
self.transform=transform
self.preprocessing=preprocessing
self.resize=resize
def __len__(self):
return len(self.path)
def __getitem__(self, idx):
p=self.path[idx]
image1=cv2.imread(p)
label=p.split("/")[-2].split("_")[-1]
image1=cv2.cvtColor(image1,cv2.COLOR_BGR2RGB)
if self.transform:
image1=self.transform(image=image1)['image']
image1=transforms.ToPILImage()(image1)
image1=transforms.ToTensor()(image1)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
image1=normalize(image1)
return image1,int(label)
火车:
def train(epoch_number,model,optim,loss):
model.train()
all_loss=0
correct=0
tqdm_loader=tqdm(training_set)
for index,(img,target) in enumerate(tqdm_loader):
img=img.float().cuda()
target=target.long().cuda()
optim.zero_grad()
out=model(img)
print(out," target ",target)
loss1=loss(out,target)
print(loss1)
loss1.backward()
optim.step()
all_loss+=loss1.item()
avg_loss=all_loss/(index+1)
pred=out.argmax(dim=1,keepdim=True)
correct+=pred.eq(target.view_as(pred)).sum().item()/len(target)
avg_acc=correct/(index+1)
tqdm_loader.set_description("Epoch {} train loss={:4} acc={:4} ".format(epoch_number,round(avg_loss,4),round(avg_acc,4)))
return avg_loss,avg_acc
输出:
打印(输出,“目标”,目标)
,
[ 6.1667e-02, -3.9864e-01, -4.1212e-01],
[-2.3100e-01, -3.7821e-01, -2.8159e-01],
[-2.9442e-01, -5.0409e-01, -3.1046e-01],
[ 1.4866e-01, -2.8496e-01, -1.7643e-01],
[-2.4554e-01, -2.5063e-01, -6.7061e-01],
[-7.1597e-02, -3.5376e-01, -5.7830e-01],
[-2.1527e-01, -4.0284e-01, -4.5993e-01],
[ 1.2050e-02, -5.5684e-01, -1.6044e-01],
[-3.7750e-02, -5.3680e-01, -4.3820e-01],
[-1.1966e-01, -2.5146e-01, -4.9405e-01],
[-2.3308e-01, -6.3452e-01, -3.9821e-01],
[-3.6530e-01, -1.5242e-01, -2.6457e-01],
[-1.8864e-01, -6.0979e-01, -5.5342e-01],
[-2.4755e-01, -4.7011e-01, -2.6204e-01],
[-3.1907e-01, -4.2680e-01, -3.4576e-01],
[-2.1872e-01, -5.3857e-01, -2.9729e-01],
[-7.1475e-02, -4.0458e-01, -3.2042e-01],
[-2.8925e-01, -4.3376e-02, -4.9899e-01],
[-4.8227e-02, -1.8701e-01, -2.2106e-01],
[ 1.7829e-02, -6.5816e-01, -4.0141e-01],
[-2.7450e-01, -3.9498e-01, -2.3189e-01],
[-1.8847e-01, -6.8187e-01, -2.0631e-01],
[-3.5251e-01, -5.3258e-01, -6.3298e-01],
[-6.5548e-02, -2.5093e-01, -5.4346e-01],
[ 2.3848e-01, -3.6152e-01, -1.6380e-01],
[-2.1488e-01, -6.4888e-01, -7.7022e-01],.....
target tensor([2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 3, 2, 3, 2, 2, 2, 2, 3, 2, 1, 3, 3, 2, 2,
3, 2, 3, 2, 3, 1, 3, 3, 1, 2, 3, 2, 1, 1, 3, 1, 1, 2, 3, 2, 2, 2, 2, 2,.....
打印(loss1)
1, 2, 3, 3, 1, 3, 1, 3, 3, 2, 3, 3, 2, 3, 2, 3], device='cuda:0'
tensor(1.0870, device='cuda:0', grad_fn=<NllLossBackward>
纪元数=10/20/30:
同样的结果:
val loss=1.2 acc=0.4 train loss=0.6 acc=0.65
我做错了什么?
当验证损失大于训练损失时,通常是过拟合的标志。您可以做的事情很少:
- 添加批量归一化的丢弃:
这使模型更加稳健。
- 使模型更深:
向模型添加更多层以更好地理解模式。
- 使用更好的优化器:
Adam、Adagrad 和 RMSprop 等自适应优化器通常很有效。