python 中的 Plotly-Dash 股票应用程序,带有客户端回调(xaxis 缩放上的 yaxis 自动缩放)

Plotly-Dash stock app in python, with clientside callback (yaxis autoscale on xaxis zoom)

我正在使用 xaxis 滑块在虚线图 (python) 中创建一个简单的股票图表应用程序。滑动 xaxis 时,我希望 yaxis 动态重新缩放到视图。我想我已经设法在通过 'relayoutData' 挂钩滑动 xaxis 刻度时触发回调函数。但是脚本没有更新 yaxis 而是抛出错误。我不确定从回调函数更新布局的正确语法。有什么想法吗?

到目前为止,这是我的代码。它 运行 秒,但 yaxis 设置在 运行 时间,并且不更新。

非常感谢您的帮助=)

import dash
from dash.dependencies import Output, Input
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import numpy as np
import datetime

#some random values
a = datetime.datetime.today()
numdays = 100
dateList = []
for x in range (0, numdays):
    dateList.append(a - datetime.timedelta(days = x))
xy = [dateList,np.random.rand(100)]

app = dash.Dash()

app.title = 'Random'
dataS = go.Scatter(
        x = xy[0],
        y = xy[1],
        name = 'Rand',
        mode = 'lines'
    )
layoutS = go.Layout(
    title="Rand",
    xaxis=dict(
        rangeslider_visible=True,
        rangeselector=dict(
            buttons=list([
                dict(count=1, label="1m", step="month", stepmode="backward"),
                dict(count=6, label="6m", step="month", stepmode="backward"),
                dict(count=1, label="YTD", step="year", stepmode="todate"),
                dict(count=1, label="1y", step="year", stepmode="backward"),
                dict(count=5, label="5y", step="year", stepmode="backward"),
                dict(step="all")
            ])
        )
    )
)

app.layout = html.Div(
    html.Div([
        html.H1(children='Random nums'),
        html.Div(children='''
            Rand rand rand.
        '''),

        dcc.Graph(id='RandGraph', animate=True, figure=go.FigureWidget(data=dataS,layout=layoutS))
    ])
)

@app.callback(Output('RandGraph','figure'),[Input('RandGraph','relayoutData')])
def update_graph(relOut):
    layout = go.Layout(
        yaxis=dict(range=[min(y),max(y)])
    )
    return {'layout':layout}

if __name__ == '__main__':
    app.run_server(debug=False)

这是结果。我首先尝试了服务器端实现,结果非常慢(我保留它以供参考)。客户端实现的响应速度更快。使用起来很愉快。我只需要学习一些 javascript 就可以了 =) 当我尝试进行数组过滤时,我确实遗漏了 pandas!

这是工作代码。享受吧!

import dash
from dash.dependencies import Output, Input, State
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import numpy as np
import pandas as pd
import datetime

#some random values
a = datetime.datetime.today()
numdays = 100
dateList = []
for x in range (0, numdays):
    dateList.append(a - datetime.timedelta(days = x))
xy = [dateList,np.random.rand(100)]
df = pd.DataFrame(data=xy[1],columns=["y"],index=xy[0])


#Graph data
dataS = [dict(
    x = df.index,
    y = df['y'],
    name = 'meter',
    mode = 'lines'
)]

#Graph layout
layoutS = go.Layout(
    title="Meter",
    xaxis=dict(
        rangeslider_visible=True,
        rangeselector=dict(
            buttons=list([
                dict(count=1, label="1m", step="month", stepmode="backward"),
                dict(count=6, label="6m", step="month", stepmode="backward"),
                dict(count=1, label="YTD", step="year", stepmode="todate"),
                dict(count=1, label="1y", step="year", stepmode="backward"),
                dict(count=5, label="5y", step="year", stepmode="backward"),
                dict(step="all")
            ])
        )
    ),
    yaxis=dict(range=[0,2])
)

#Dash app layout
app = dash.Dash()
app.title = 'Random'

app.layout = html.Div(
    html.Div([
        html.H1(children='Random nums'),
        html.Div(children='''
            Rand rand rand.
        '''),

        dcc.Input(
            id='input-y',
            placeholder='Insert y value',
            type='number',
            value='',
        ),
        html.Div(id='result'),

        dcc.Graph(id='RandGraph',figure=dict(data=dataS,layout=layoutS))
    ])
)

#client side implementation
app.clientside_callback(
    """
    function(relOut, Figure) {
        if (typeof relOut !== 'undefined') {
            if (typeof relOut["xaxis.range"] !== 'undefined') {
                //get active filter from graph
                fromS = new Date(relOut["xaxis.range"][0]).getTime()
                toS = new Date(relOut["xaxis.range"][1]).getTime()

                xD = Figure.data[0].x
                yD = Figure.data[0].y

                //filter y data with graph display
                yFilt = xD.reduce(function (pV,cV,cI){
                    sec = new Date(cV).getTime()
                    if (sec >= fromS && sec <= toS) {
                        pV.push(yD[cI])
                    }
                    return pV
                }, [])

                yMax = Math.max.apply(Math, yFilt)
                yMin = Math.min.apply(Math, yFilt)
            } else { 
                yMin = Math.min.apply(Math, Figure.data[0].y)
                yMax = Math.max.apply(Math, Figure.data[0].y) 
            }
        } else { 
            yMin = Math.min.apply(Math, Figure.data[0].y)
            yMax = Math.max.apply(Math, Figure.data[0].y) 
        }
        Figure.layout.yaxis = {
            'range': [yMin,yMax],
            'type': 'linear'
        }
        return {'data': Figure.data, 'layout': Figure.layout};
    }
    """,
    Output('RandGraph','figure'),
    [Input('RandGraph','relayoutData')],[State('RandGraph', 'figure')]
)

#Server side implementation (slow)
#@app.callback(
#    Output('RandGraph','figure'),
#    [Input('RandGraph','relayoutData')],[State('RandGraph', 'figure')]
#)
#def update_result(relOut,Fig):
#    ymin = df.loc[relOut['xaxis.range'][1]:relOut['xaxis.range'][0],'y'].min()
#    ymax = df.loc[relOut['xaxis.range'][1]:relOut['xaxis.range'][0],'y'].max()
#    newLayout = go.Layout(
#        title="OL Meter",
#        xaxis=dict(
#            rangeslider_visible=True,
#            rangeselector=dict(
#                buttons=list([
#                    dict(count=0, label="1m", step="month", stepmode="backward"),
#                    dict(count=6, label="6m", step="month", stepmode="backward"),
#                    dict(count=1, label="YTD", step="year", stepmode="todate"),
#                    dict(count=1, label="1y", step="year", stepmode="backward"),
#                    dict(count=5, label="5y", step="year", stepmode="backward"),
#                    dict(step="all")
#                ])
#            ),
#            range=relOut['xaxis.range']
#        ),
#        yaxis=dict(range=[ymin,ymax])
#    )
#    
#    
#    Fig['layout']=newLayout
#    return Fig

if __name__ == '__main__':
    app.run_server(debug=False)