类型 class 和依赖类型

Type class and dependent types

首先,我不知道如何正确标记我的问题。这也可能是我找不到有用资源的原因。非常感谢任何提示。

trait Context[T]
{
    self =>

    trait Rule
    {
        def apply( value: T ): Boolean
    }

    implicit class RichRule[A <: Rule]( a: A )
    {
        def and[B <: Rule]( b: B ): and[A, B] = self.and( a, b )
        def or[B <: Rule]( b: B ): or[A, B] = self.or( a, b )
    }

    sealed trait Group[A <: Rule, B <: Rule] extends Rule
    {
        def a: A

        def b: B

        override def apply( value: T ) = ???
    }

    case class and[A <: Rule, B <: Rule]( a: A, b: B ) extends Group[A, B]
    case class or[A <: Rule, B <: Rule]( a: A, b: B ) extends Group[A, B]
}

鉴于上面的代码,我现在可以用这种方式定义和链接 Ruless:

new Context[String]
{
    class MyRule extends Rule
    {
        override def apply( value: String ) = true
    }

    case class A() extends MyRule
    case class B() extends MyRule

    val x1: A and B or A = A() and B() or A()
}

这按我的预期工作,但现在是棘手的部分。我想介绍一个类型 Class Combination 来解释如何连接两个规则。

trait Combination[-A <: Rule, -B <: Rule]
{
    type Result <: Rule

    def combine( a: A, b: B ): Result
}
trait AndCombination[-A <: Rule, -B <: Rule] extends Combination[A, B]
trait OrCombination[-A <: Rule, -B <: Rule] extends Combination[A, B]

现在应使用运算符传递此类型 Class。

implicit class RichRule[A <: Rule]( a: A )
{
    def and[B <: Rule]( b: B )( implicit c: AndCombination[A, B] ): and[A, B] = ???
    def or[B <: Rule]( b: B )( implicit c: OrCombination[A, B] ): or[A, B] = self.or( a, b )
}

经过一些调整后仍然有效。

implicit val c1 = new Combination[MyRule, MyRule]
{
    type Result = MyRule

    def combine( a: A, b: B ): MyRule = a
}

val x: A and B = A() and B()

但如果它变得更复杂,事情就会分崩离析。

A() and B() and A()

将引发隐式缺失错误:Combination[and[A, B], A] 缺失。但我希望它使用它已经知道如何处理的 and[A, B] (type Result = MyRule) 的隐式组合的结果 (Combination[and[A, B]#Result, A]).

保留组合规则的类型信息对我来说很重要val x: A and B or A,将它们折叠成最终结果类型很容易,但不是我想要的。

这是我所能得到的最接近的结果,但是编译失败。

trait Context[T]
{
    self =>

    trait Rule

    trait Value extends Rule

    trait Group[A <: Rule, B <: Rule] extends Rule
    {
        def a: A

        def b: B

        implicit val resolver: Resolver[_ <: Group[A, B]]
    }

    case class and[A <: Rule, B <: Rule]( a: A, b: B )( implicit val resolver: Resolver[and[A, B]] ) extends Group[A, B]

    implicit class RichRule[A <: Rule]( a: A )
    {
        def and[B <: Rule]( b: B )( implicit resolver: Resolver[and[A, B]] ) = self.and[A, B]( a, b )
    }

    trait Resolver[-A <: Rule]
    {
        type R <: Value

        def resolve( a: A ): R
    }
}

object O extends Context[String]
{
    implicit val c1 = new Resolver[A and A]
    {
        override type R = A

        override def resolve( a: O.and[A, A] ) = ???
    }

    implicit def c2[A <: Value, B <: Value, C <: Value]( implicit r1: Resolver[A and B] ) = new Resolver[A and B and C]
    {
        override type R = C

        override def resolve( a: A and B and C ): C =
        {
            val x: r1.R = r1.resolve( a.a )
            new c2( x )
            ???
        }
    }

    class c2[A <: Value, B <: Value]( val a: A )( implicit r2: Resolver[A and B] ) extends Resolver[A and B]
    {
        override type R = B

        override def resolve( a: O.and[A, B] ) = a.b
    }

    case class A() extends Value

    val x: A and A and A = A() and A() and A()
}

您的代码无法编译的原因是在指令中

 new c2( x )

编译器需要从x解析implicit r2: Resolver[A and B],唯一可用的类型信息是x的类型,即r1.R

此类问题需要为编译器提供更多类型信息并添加一些隐式参数。当您需要一个 Resolver[A and B] 时,您不能使用它的 R 类型来解析另一个 Resolver[r1.R and C].

type ResolverAux[-A<:Rule,B] = Resolver[A] { type R = B }

有了这个,您可以重写您的 c2 的签名

implicit def c2[A <: Value, B <: Value, C <: Value,D<:Value]( implicit r1: ResolverAux[A and B,D], r2:Resolver[D and C] ):Resolver[A and B and C] = new Resolver[A and B and C]
  {
    override type R = C

    override def resolve( a: A and B and C ): C =
    {
      val x: r1.R = r1.resolve( a.a )
      new c2[r1.R,C]( x )
      ???
    }
  }

请注意,通过使用类型别名并引入一个额外的泛型参数,我可以表达关系 r1.R1 = D,然后用于解析第二个隐式 r2