测试数据的统计测试
Statistical test with test-data
如果我使用带插入符号的两种方法(NN 和 KNN)然后我想提供显着性检验,我该如何进行 wilcoxon 检验。
我提供的数据样本如下
structure(list(Input = c(25, 193, 70, 40), Output = c(150, 98,
27, 60), Inquiry = c(75, 70, 0, 20), File = c(60, 36, 12, 12),
FPAdj = c(1, 1, 0.8, 1.15), RawFPcounts = c(1750, 1902, 535,
660), AdjFP = c(1750, 1902, 428, 759), Effort = c(102.4,
105.2, 11.1, 21.1)), row.names = c(NA, 4L), class = "data.frame")
d=readARFF("albrecht.arff")
index <- createDataPartition(d$Effort, p = .70,list = FALSE)
tr <- d[index, ]
ts <- d[-index, ]
boot <- trainControl(method = "repeatedcv", number=100)
cart1 <- train(log10(Effort) ~ ., data = tr,
method = "knn",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot)
postResample(predict(cart1, ts), log10(ts$Effort))
cart2 <- train(log10(Effort) ~ ., data = tr,
method = "knn",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot)
postResample(predict(cart2, ts), log10(ts$Effort))
这里如何执行wilcox.test()
。
Warm regards
这对你有用吗?
library(caret)
df <- structure(list(Input = c(25, 193, 70, 40), Output = c(150, 98,
27, 60), Inquiry = c(75, 70, 0, 20), File = c(60, 36, 12, 12),
FPAdj = c(1, 1, 0.8, 1.15), RawFPcounts = c(1750, 1902, 535,
660), AdjFP = c(1750, 1902, 428, 759), Effort = c(102.4,
105.2, 11.1, 21.1)), row.names = c(NA, 4L), class = "data.frame")
# not enough data points in df for ML: increase the number of df rows X10
d <- df[rep(seq_len(nrow(df)), 10), ]
index <- createDataPartition(d$Effort, p = .70,list = FALSE)
tr <- d[index, ]
ts <- d[-index, ]
boot <- trainControl(method = "repeatedcv", number=100)
cart1 <- train(log10(Effort) ~ ., data = tr,
method = "knn",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot)
# save the output to "model_predictions_1"
model_predictions_1 <- postResample(predict(cart1, ts), log10(ts$Effort))
cart2 <- train(log10(Effort) ~ ., data = tr,
method = "knn",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot)
# save the output to "model_predictions_2"
model_predictions_2 <- postResample(predict(cart2, ts), log10(ts$Effort))
# test model_predictions_1 vs model_predictions_2
wilcox.test(model_predictions_1, model_predictions_2, exact = FALSE)
解决您的问题的一种方法是为 knn 和 NN 生成多个性能值,您可以使用统计测试对其进行比较。这可以使用嵌套重采样来实现。
在嵌套重采样中,您正在执行 train/test 多次拆分并在每个测试集上评估模型。
例如,让我们使用 BostonHousing 数据:
library(caret)
library(mlbench)
data(BostonHousing)
让示例仅 select 个数字列以使其简单:
d <- BostonHousing[,sapply(BostonHousing, is.numeric)]
据我所知,无法立即在插入符号中执行嵌套 CV,因此需要一个简单的包装器:
为嵌套 CV 生成外部折叠:
outer_folds <- createFolds(d$medv, k = 5)
让我们使用 bootstrap 重采样作为内部重采样循环来调整超参数:
boot <- trainControl(method = "boot",
number = 100)
现在遍历外部折叠并使用训练集执行超参数优化并在测试集上进行预测:
CV_knn <- lapply(outer_folds, function(index){
tr <- d[-index, ]
ts <- d[index,]
cart1 <- train(medv ~ ., data = tr,
method = "knn",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot,
tuneLength = 10) #to keep it short we will just probe 10 combinations of hyper parameters
postResample(predict(cart1, ts), ts$medv)
})
仅从结果中提取 MAE:
sapply(CV_knn, function(x) x[3]) -> CV_knn_MAE
CV_knn_MAE
#output
Fold1.MAE Fold2.MAE Fold3.MAE Fold4.MAE Fold5.MAE
2.503333 2.587059 2.031200 2.475644 2.607885
例如对 glmnet 学习者做同样的事情:
CV_glmnet <- lapply(outer_folds, function(index){
tr <- d[-index, ]
ts <- d[index,]
cart1 <- train(medv ~ ., data = tr,
method = "glmnet",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot,
tuneLength = 10)
postResample(predict(cart1, ts), ts$medv)
})
sapply(CV_glmnet, function(x) x[3]) -> CV_glmnet_MAE
CV_glmnet_MAE
#output
Fold1.MAE Fold2.MAE Fold3.MAE Fold4.MAE Fold5.MAE
3.400559 3.383317 2.830140 3.605266 3.525224
现在使用 wilcox.test
比较两者。由于两个学习者的表现是使用相同的数据分割生成的,因此配对测试是合适的:
wilcox.test(CV_knn_MAE,
CV_glmnet_MAE,
paired = TRUE)
如果比较两种以上的算法,可以使用 friedman.test
如果我使用带插入符号的两种方法(NN 和 KNN)然后我想提供显着性检验,我该如何进行 wilcoxon 检验。
我提供的数据样本如下
structure(list(Input = c(25, 193, 70, 40), Output = c(150, 98,
27, 60), Inquiry = c(75, 70, 0, 20), File = c(60, 36, 12, 12),
FPAdj = c(1, 1, 0.8, 1.15), RawFPcounts = c(1750, 1902, 535,
660), AdjFP = c(1750, 1902, 428, 759), Effort = c(102.4,
105.2, 11.1, 21.1)), row.names = c(NA, 4L), class = "data.frame")
d=readARFF("albrecht.arff")
index <- createDataPartition(d$Effort, p = .70,list = FALSE)
tr <- d[index, ]
ts <- d[-index, ]
boot <- trainControl(method = "repeatedcv", number=100)
cart1 <- train(log10(Effort) ~ ., data = tr,
method = "knn",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot)
postResample(predict(cart1, ts), log10(ts$Effort))
cart2 <- train(log10(Effort) ~ ., data = tr,
method = "knn",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot)
postResample(predict(cart2, ts), log10(ts$Effort))
这里如何执行wilcox.test()
。
Warm regards
这对你有用吗?
library(caret)
df <- structure(list(Input = c(25, 193, 70, 40), Output = c(150, 98,
27, 60), Inquiry = c(75, 70, 0, 20), File = c(60, 36, 12, 12),
FPAdj = c(1, 1, 0.8, 1.15), RawFPcounts = c(1750, 1902, 535,
660), AdjFP = c(1750, 1902, 428, 759), Effort = c(102.4,
105.2, 11.1, 21.1)), row.names = c(NA, 4L), class = "data.frame")
# not enough data points in df for ML: increase the number of df rows X10
d <- df[rep(seq_len(nrow(df)), 10), ]
index <- createDataPartition(d$Effort, p = .70,list = FALSE)
tr <- d[index, ]
ts <- d[-index, ]
boot <- trainControl(method = "repeatedcv", number=100)
cart1 <- train(log10(Effort) ~ ., data = tr,
method = "knn",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot)
# save the output to "model_predictions_1"
model_predictions_1 <- postResample(predict(cart1, ts), log10(ts$Effort))
cart2 <- train(log10(Effort) ~ ., data = tr,
method = "knn",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot)
# save the output to "model_predictions_2"
model_predictions_2 <- postResample(predict(cart2, ts), log10(ts$Effort))
# test model_predictions_1 vs model_predictions_2
wilcox.test(model_predictions_1, model_predictions_2, exact = FALSE)
解决您的问题的一种方法是为 knn 和 NN 生成多个性能值,您可以使用统计测试对其进行比较。这可以使用嵌套重采样来实现。
在嵌套重采样中,您正在执行 train/test 多次拆分并在每个测试集上评估模型。
例如,让我们使用 BostonHousing 数据:
library(caret)
library(mlbench)
data(BostonHousing)
让示例仅 select 个数字列以使其简单:
d <- BostonHousing[,sapply(BostonHousing, is.numeric)]
据我所知,无法立即在插入符号中执行嵌套 CV,因此需要一个简单的包装器:
为嵌套 CV 生成外部折叠:
outer_folds <- createFolds(d$medv, k = 5)
让我们使用 bootstrap 重采样作为内部重采样循环来调整超参数:
boot <- trainControl(method = "boot",
number = 100)
现在遍历外部折叠并使用训练集执行超参数优化并在测试集上进行预测:
CV_knn <- lapply(outer_folds, function(index){
tr <- d[-index, ]
ts <- d[index,]
cart1 <- train(medv ~ ., data = tr,
method = "knn",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot,
tuneLength = 10) #to keep it short we will just probe 10 combinations of hyper parameters
postResample(predict(cart1, ts), ts$medv)
})
仅从结果中提取 MAE:
sapply(CV_knn, function(x) x[3]) -> CV_knn_MAE
CV_knn_MAE
#output
Fold1.MAE Fold2.MAE Fold3.MAE Fold4.MAE Fold5.MAE
2.503333 2.587059 2.031200 2.475644 2.607885
例如对 glmnet 学习者做同样的事情:
CV_glmnet <- lapply(outer_folds, function(index){
tr <- d[-index, ]
ts <- d[index,]
cart1 <- train(medv ~ ., data = tr,
method = "glmnet",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot,
tuneLength = 10)
postResample(predict(cart1, ts), ts$medv)
})
sapply(CV_glmnet, function(x) x[3]) -> CV_glmnet_MAE
CV_glmnet_MAE
#output
Fold1.MAE Fold2.MAE Fold3.MAE Fold4.MAE Fold5.MAE
3.400559 3.383317 2.830140 3.605266 3.525224
现在使用 wilcox.test
比较两者。由于两个学习者的表现是使用相同的数据分割生成的,因此配对测试是合适的:
wilcox.test(CV_knn_MAE,
CV_glmnet_MAE,
paired = TRUE)
如果比较两种以上的算法,可以使用 friedman.test