C++ Eigen 库中的 argmax() 方法
argmax() method in C++ Eigen Library
我正在使用 Eigen
库进行 matrix/tensor 计算,我想 returns 沿深度轴的最大值索引。类似于 numpy.argmax() 在 Python 中的作用。
张量维度如下:
(行数 = 200,列数 = 200,深度 = 4)
#include <Eigen/Dense>
int main(){
Eigen::Tensor<double, 3> table(4,200,200);
table.setRandom();
// How can I do this task for axis = 2, i.e depth of a tensor?
// int max_axis = table.argmax(ax=2);
return 0;
}
老实说,这是一个迂回曲折的问题本身,并不是一个令人满意的答案。不过,以下方法对我有用。
我在 Eigen 库中找不到我想要的东西。相反,我切换到 armadillo library which is pretty similar to numpy having a user-friendly API. Moreover, Comparatively speaking, armadillo 对于来自 Python 或 Matlab 背景的人来说更容易理解。
在犰狳中,找到 argmax 很简单,如下所示:
(在所有深度轴上查找第二行和第二列的 argmax)
arma::Cube<double> A(200, 200, 4, arma::fill::randu);
uword i = A(arma::span(1), arma::span(1), arma::span::all).index_max();
Eigen 代码库中的 This test suite 有几个示例,用于跨轴子集执行缩减。
这是一种似乎有效的方法:
std::array<int, 1> reduce_dims{2};
Eigen::Tensor<Eigen::Tuple<Eigen::Index, double>, 2> reduced =
table.index_tuples().reduce(reduce_dims,
Eigen::internal::ArgMaxTupleReducer<
Eigen::Tuple<Eigen::Index, double> >());
reduce_dims
指定应减少的轴列表(在本例中,仅通道)。
返回的张量包含“线性”索引和最大值本身,因此要提取实际通道索引,您可能需要迭代张量:
for (int c = 0; c < reduced.dimension(1); ++c) {
for (int r = 0; r < reduced.dimension(0); ++r) {
Eigen::Index argmax_channel_index =
reduced(r, c).first / (table.dimension(0) * table.dimension(1));
std::cout << "argmax channel: " << argmax_channel_index << " "
<< "max: " << reduced(r, c).second << std::endl;
}
}
Eigen 的张量库有一个 argmin/argmax
成员函数,不幸的是目前没有在 https://eigen.tuxfamily.org/dox/unsupported/eigen_tensors.html 上记录。
Eigen 的矩阵库可以通过 minCoeff/maxCoeff
的访问者重载来模仿相同的行为。参见:https://eigen.tuxfamily.org/dox/group__TutorialReductionsVisitorsBroadcasting.html
#include <Eigen/Dense>
#include <unsupported/Eigen/CXX11/Tensor>
#include <iostream>
#define STR_(x) #x
#define STR(x) STR_(x)
#define PRINT(x) std::cout << STR(x) << ":\n" << (x) << std::endl
int main()
{
using namespace Eigen;
using T = int;
using S = Sizes<2, 3>;
S const sizes{};
T constexpr data[S::total_size]{
8, 4,
1, 6,
9, 2,
};
Map<MatrixX<T> const> const matrix(data, sizes[0], sizes[1]);
PRINT(matrix);
RowVector2<Index> argmax{};
matrix.maxCoeff(&argmax.x(), &argmax.y());
PRINT(argmax);
VectorX<Index> argmax0{matrix.cols()};
for (Index col = 0; col < matrix.cols(); ++col)
matrix.col(col).maxCoeff(&argmax0[col]);
PRINT(argmax0);
VectorX<Index> argmax1{matrix.rows()};
for (Index row = 0; row < matrix.rows(); ++row)
matrix.row(row).maxCoeff(&argmax1[row]);
PRINT(argmax1);
TensorMap<Tensor<T const, S::count>> const tensor(data, sizes);
PRINT(tensor);
PRINT(tensor.argmax());
PRINT(tensor.argmax(0));
PRINT(tensor.argmax(1));
// Note that tensor.argmax() is the index for a 1D view of the data:
Index const matrix_index = sizes.IndexOfColMajor(std::array{argmax.x(), argmax.y()});
Index const tensor_index = Tensor<Index, 0>{tensor.argmax()}();
PRINT(matrix_index == tensor_index);
}
输出:
matrix:
8 1 9
4 6 2
argmax:
0 2
argmax0:
0
1
0
argmax1:
2
1
tensor:
8 1 9
4 6 2
tensor.argmax():
4
tensor.argmax(0):
0
1
0
tensor.argmax(1):
2
1
matrix_index == tensor_index:
1
我正在使用 Eigen
库进行 matrix/tensor 计算,我想 returns 沿深度轴的最大值索引。类似于 numpy.argmax() 在 Python 中的作用。
张量维度如下: (行数 = 200,列数 = 200,深度 = 4)
#include <Eigen/Dense>
int main(){
Eigen::Tensor<double, 3> table(4,200,200);
table.setRandom();
// How can I do this task for axis = 2, i.e depth of a tensor?
// int max_axis = table.argmax(ax=2);
return 0;
}
老实说,这是一个迂回曲折的问题本身,并不是一个令人满意的答案。不过,以下方法对我有用。
我在 Eigen 库中找不到我想要的东西。相反,我切换到 armadillo library which is pretty similar to numpy having a user-friendly API. Moreover, Comparatively speaking, armadillo 对于来自 Python 或 Matlab 背景的人来说更容易理解。
在犰狳中,找到 argmax 很简单,如下所示: (在所有深度轴上查找第二行和第二列的 argmax)
arma::Cube<double> A(200, 200, 4, arma::fill::randu);
uword i = A(arma::span(1), arma::span(1), arma::span::all).index_max();
This test suite 有几个示例,用于跨轴子集执行缩减。
这是一种似乎有效的方法:
std::array<int, 1> reduce_dims{2};
Eigen::Tensor<Eigen::Tuple<Eigen::Index, double>, 2> reduced =
table.index_tuples().reduce(reduce_dims,
Eigen::internal::ArgMaxTupleReducer<
Eigen::Tuple<Eigen::Index, double> >());
reduce_dims
指定应减少的轴列表(在本例中,仅通道)。
返回的张量包含“线性”索引和最大值本身,因此要提取实际通道索引,您可能需要迭代张量:
for (int c = 0; c < reduced.dimension(1); ++c) {
for (int r = 0; r < reduced.dimension(0); ++r) {
Eigen::Index argmax_channel_index =
reduced(r, c).first / (table.dimension(0) * table.dimension(1));
std::cout << "argmax channel: " << argmax_channel_index << " "
<< "max: " << reduced(r, c).second << std::endl;
}
}
Eigen 的张量库有一个 argmin/argmax
成员函数,不幸的是目前没有在 https://eigen.tuxfamily.org/dox/unsupported/eigen_tensors.html 上记录。
Eigen 的矩阵库可以通过 minCoeff/maxCoeff
的访问者重载来模仿相同的行为。参见:https://eigen.tuxfamily.org/dox/group__TutorialReductionsVisitorsBroadcasting.html
#include <Eigen/Dense>
#include <unsupported/Eigen/CXX11/Tensor>
#include <iostream>
#define STR_(x) #x
#define STR(x) STR_(x)
#define PRINT(x) std::cout << STR(x) << ":\n" << (x) << std::endl
int main()
{
using namespace Eigen;
using T = int;
using S = Sizes<2, 3>;
S const sizes{};
T constexpr data[S::total_size]{
8, 4,
1, 6,
9, 2,
};
Map<MatrixX<T> const> const matrix(data, sizes[0], sizes[1]);
PRINT(matrix);
RowVector2<Index> argmax{};
matrix.maxCoeff(&argmax.x(), &argmax.y());
PRINT(argmax);
VectorX<Index> argmax0{matrix.cols()};
for (Index col = 0; col < matrix.cols(); ++col)
matrix.col(col).maxCoeff(&argmax0[col]);
PRINT(argmax0);
VectorX<Index> argmax1{matrix.rows()};
for (Index row = 0; row < matrix.rows(); ++row)
matrix.row(row).maxCoeff(&argmax1[row]);
PRINT(argmax1);
TensorMap<Tensor<T const, S::count>> const tensor(data, sizes);
PRINT(tensor);
PRINT(tensor.argmax());
PRINT(tensor.argmax(0));
PRINT(tensor.argmax(1));
// Note that tensor.argmax() is the index for a 1D view of the data:
Index const matrix_index = sizes.IndexOfColMajor(std::array{argmax.x(), argmax.y()});
Index const tensor_index = Tensor<Index, 0>{tensor.argmax()}();
PRINT(matrix_index == tensor_index);
}
输出:
matrix:
8 1 9
4 6 2
argmax:
0 2
argmax0:
0
1
0
argmax1:
2
1
tensor:
8 1 9
4 6 2
tensor.argmax():
4
tensor.argmax(0):
0
1
0
tensor.argmax(1):
2
1
matrix_index == tensor_index:
1