TensorFlow1.15,Estimator的内在逻辑input_fn?还是MirroredStrategy的内在逻辑?
TensorFlow1.15, the inner logic of Estimator's input_fn? Or the inner logic of MirroredStrategy?
我在一台机器上用 4 个 GPU 预训练 BERT,而不是 1 个 GPU。
对于每个训练步骤,我想知道 input_fn
是给 1 个 GPU 1 个批次还是给 4 个 GPU 1 个批次。
mirrow策略代码:
distribution = tf.contrib.distribute.MirroredStrategy(
devices=["device:GPU:%d" % i for i in range(FLAGS.n_gpus)],
cross_tower_ops=tf.distribute.HierarchicalCopyAllReduce())
run_config = RunConfig(
train_distribute=distribution,
log_step_count_steps=log_every_n_steps,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps)
model_fn = model_fn_builder(
bert_config=bert_config,
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=FLAGS.num_train_steps,
num_warmup_steps=FLAGS.num_warmup_steps,
use_tpu=FLAGS.use_tpu,
use_one_hot_embeddings=FLAGS.use_tpu)
estimator = Estimator(
model_fn=model_fn,
params={},
config=run_config)
input_fn
代码:
def input_fn(params):
batch_size = FLAGS.train_batch_size
name_to_features = {
"input_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.FixedLenFeature([1], tf.int64),
}
if is_training:
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
d = d.repeat()
d = d.shuffle(buffer_size=len(input_files))
cycle_length = min(num_cpu_threads, len(input_files))
d = d.apply(
tf.contrib.data.parallel_interleave(
tf.data.TFRecordDataset,
sloppy=is_training,
cycle_length=cycle_length))
d = d.shuffle(buffer_size=100)
else:
d = tf.data.TFRecordDataset(input_files)
d = d.repeat()
d = d.apply(
tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
num_parallel_batches=num_cpu_threads,
drop_remainder=True))
d = d.prefetch(10)
return d
其他代码:
estimator.train(input_fn, max_steps=FLAGS.num_train_steps)
如果input_fn
给1个GPU 1个batch,那么train_batch_size
应该是max_batchsize_per_gpu.
如果input_fn
给4个GPU 1个batch,那么train_batch_size
应该是max_batchsize_per_gpu*4.
根据BERT-GPU。
input_fn
return 1 个 GPU 的 1 个批次。
batch_size
用于 1 个 GPU。
我在一台机器上用 4 个 GPU 预训练 BERT,而不是 1 个 GPU。
对于每个训练步骤,我想知道 input_fn
是给 1 个 GPU 1 个批次还是给 4 个 GPU 1 个批次。
mirrow策略代码:
distribution = tf.contrib.distribute.MirroredStrategy(
devices=["device:GPU:%d" % i for i in range(FLAGS.n_gpus)],
cross_tower_ops=tf.distribute.HierarchicalCopyAllReduce())
run_config = RunConfig(
train_distribute=distribution,
log_step_count_steps=log_every_n_steps,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps)
model_fn = model_fn_builder(
bert_config=bert_config,
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=FLAGS.num_train_steps,
num_warmup_steps=FLAGS.num_warmup_steps,
use_tpu=FLAGS.use_tpu,
use_one_hot_embeddings=FLAGS.use_tpu)
estimator = Estimator(
model_fn=model_fn,
params={},
config=run_config)
input_fn
代码:
def input_fn(params):
batch_size = FLAGS.train_batch_size
name_to_features = {
"input_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.FixedLenFeature([1], tf.int64),
}
if is_training:
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
d = d.repeat()
d = d.shuffle(buffer_size=len(input_files))
cycle_length = min(num_cpu_threads, len(input_files))
d = d.apply(
tf.contrib.data.parallel_interleave(
tf.data.TFRecordDataset,
sloppy=is_training,
cycle_length=cycle_length))
d = d.shuffle(buffer_size=100)
else:
d = tf.data.TFRecordDataset(input_files)
d = d.repeat()
d = d.apply(
tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
num_parallel_batches=num_cpu_threads,
drop_remainder=True))
d = d.prefetch(10)
return d
其他代码:
estimator.train(input_fn, max_steps=FLAGS.num_train_steps)
如果input_fn
给1个GPU 1个batch,那么train_batch_size
应该是max_batchsize_per_gpu.
如果input_fn
给4个GPU 1个batch,那么train_batch_size
应该是max_batchsize_per_gpu*4.
根据BERT-GPU。
input_fn
return 1 个 GPU 的 1 个批次。
batch_size
用于 1 个 GPU。