load_iris() 得到了意外的关键字参数 'as_frame'
load_iris() got an unexpected keyword argument 'as_frame'
我尝试将 iris 数据集导入 daraframe 但它显示以下错误。我检查了 scikit-learn 文档有 as_frame 命名参数 load_iris().
我的代码:
from sklearn.datasets import load_iris
df = load_iris(as_frame=True)
错误:
TypeError Traceback (most recent call last)
<ipython-input-7-1f51689afac6> in <module>
1 from sklearn.datasets import load_iris
----> 2 df = load_iris(as_frame=True)
3 df
TypeError: load_iris() got an unexpected keyword argument 'as_frame'
这可能是一个不错的选择:
from sklearn.datasets import load_iris
import pandas as pd
data = load_iris()
df = pd.DataFrame(data.data, columns=data.feature_names)
df.head()
您使用的是旧版本的 sklearn,这就是您收到错误的原因。要解决此问题,只需安装一个版本的 sklearn >= 0.23
例如:
pip install scikit-learn==0.23
Sklearn 文档:
as_framebool, default=False If True, the data is a pandas DataFrame
including columns with appropriate dtypes (numeric). The target is a
pandas DataFrame or Series depending on the number of target columns.
If return_X_y is True, then (data, target) will be pandas DataFrames
or Series as described below.
New in version 0.23.
或者如果你也想显示目标:
from sklearn.datasets import load_iris
import pandas as pd
pd.set_option("max_columns", None)
pd.set_option("max_rows", None)
data = load_iris()
df = pd.DataFrame(data.data, columns=data.feature_names)
df.insert(4, "target", data.target, allow_duplicates=False)
df
pd.set_option()用于将列和行作为一个整体显示
我尝试将 iris 数据集导入 daraframe 但它显示以下错误。我检查了 scikit-learn 文档有 as_frame 命名参数 load_iris().
我的代码:
from sklearn.datasets import load_iris
df = load_iris(as_frame=True)
错误:
TypeError Traceback (most recent call last)
<ipython-input-7-1f51689afac6> in <module>
1 from sklearn.datasets import load_iris
----> 2 df = load_iris(as_frame=True)
3 df
TypeError: load_iris() got an unexpected keyword argument 'as_frame'
这可能是一个不错的选择:
from sklearn.datasets import load_iris
import pandas as pd
data = load_iris()
df = pd.DataFrame(data.data, columns=data.feature_names)
df.head()
您使用的是旧版本的 sklearn,这就是您收到错误的原因。要解决此问题,只需安装一个版本的 sklearn >= 0.23
例如:
pip install scikit-learn==0.23
Sklearn 文档:
as_framebool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the number of target columns. If return_X_y is True, then (data, target) will be pandas DataFrames or Series as described below.
New in version 0.23.
或者如果你也想显示目标:
from sklearn.datasets import load_iris
import pandas as pd
pd.set_option("max_columns", None)
pd.set_option("max_rows", None)
data = load_iris()
df = pd.DataFrame(data.data, columns=data.feature_names)
df.insert(4, "target", data.target, allow_duplicates=False)
df
pd.set_option()用于将列和行作为一个整体显示