从非结构化文本创建 pandas DataFrame

Creating a pandas DataFrame from unstructured text

很抱歉这个菜鸟问题,但就到此为止。我正在尝试分析一些 Facebook 消息。到目前为止,我下载了一个 html 文件,用 BeautifulSoup 将它变成了一个整洁的列表,现在我正在尝试从中创建一个数据框。

我正在查看此资源:https://datatofish.com/list-to-dataframe/,但没有成功。

这是我现在的格式:

list = ['2019-01-07 12:51 PM', 'name1', 'hi how are you', 'im at home', 'wanna come over?', '2019-01-07 01:02 PM', 'name2', 'hell yeah', '', 'ill bring beer', '2019-01-07 01:06 PM', 'name1', 'awesome', 'and so on']

我尝试了几种不同的方法,但我开始觉得我有点吃不消了。我正在学习中。

这是我希望得到的输出:

index date          time       name            message
0      2019-01-07   12:51 PM   name1           hi how are you
1      2019-01-07   12:51 PM   name1           im at home
2      2019-01-07   12:51 PM   name1           wanna come over?
3      2019-01-07   12:56 PM   name2           hell yeah

我尝试遍历列表并在进行时填充列并点击日期、名称或消息。

正如我所说,我正在学习,所以如果你能指出我正确的研究方向而不是解决方案,那将是非常棒的。我将不胜感激。谢谢!

编辑:我尝试了几个现有的消息解析器,但由于某种原因,它们在 2018 年都不再受支持。他们也都给我解析错误信息。

它有点难看,但它确实有效。我很乐意赞成更优雅的解决方案!

l = iter(['2019-01-07 12:51 PM', 'name1', 'hi how are you', 'im at home', 'wanna come over?', '2019-01-07 01:02 PM', 'name2', 'hell yeah', '', 'ill bring beer', '2019-01-07 01:06 PM', 'name1', 'awesome', 'and so on'])
df = pd.DataFrame()

# get first element in list
x = next(l)

# if element is the last, catch the IterationError and stop
try:
    while 1:
        # try to convert element to datetime
        datetime = pd.to_datetime(x, format="%Y-%m-%d %H:%M %p")
        # if successful get next element as name
        x = next(l)
        name = x

        # get next elements as messages while they do not match datetime format
        x = next(l)
        while 1:
            try:
                # if datetime conversion is successful break while 
                pd.to_datetime(x, format="%Y-%m-%d %H:%M %p");
                break
            except ValueError:
                # else add message to dataframe
                df = df.append([{"datetime":datetime,"name":name,"msg":x}])
                x = next(l)
except StopIteration:
    pass

df["date"] = df["datetime"].dt.date
df["time"] = df["datetime"].dt.time
print(df)

             datetime               msg   name        date      time
0 2019-01-07 12:51:00    hi how are you  name1  2019-01-07  12:51:00
0 2019-01-07 12:51:00        im at home  name1  2019-01-07  12:51:00
0 2019-01-07 12:51:00  wanna come over?  name1  2019-01-07  12:51:00
0 2019-01-07 01:02:00         hell yeah  name2  2019-01-07  01:02:00
0 2019-01-07 01:02:00                   name2  2019-01-07  01:02:00
0 2019-01-07 01:02:00    ill bring beer  name2  2019-01-07  01:02:00
0 2019-01-07 01:06:00           awesome  name1  2019-01-07  01:06:00
0 2019-01-07 01:06:00         and so on  name1  2019-01-07  01:06:00

使用正则表达式和列表理解,提取列表内容并将其转换为 Pandas 数据框:


import pandas as pd

import re

datetime_regex = re.compile(r"\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}\sPM")
name_regex = re.compile(r"name\d+")

cols = ["date",
        "time",
        "name",
        "message"
        ]

l = ['2019-01-07 12:51 PM',
     'name1',
     'hi how are you',
     'im at home',
     'wanna come over?',
     '2019-01-07 01:02 PM',
     'name2',
     'hell yeah',
     '',
     'ill bring beer',
     '2019-01-07 01:06 PM',
     'name1',
     'awesome',
     'and so on'
     ]
tmp = ''.join(l)

datetimes = re.findall(datetime_regex, tmp)
dates = [datetime[:11] for datetime in datetimes]
times = [datetime[11:] for datetime in datetimes]
names = re.findall(name_regex, tmp)

messages = [line
            for line in l
            if not line.startswith(('2019', 'name1', 'name2'))
            ]

data = [[[dates[0], times[0], names[0], msg]
        for msg in messages[:3]],
        [[dates[1], times[1], names[1], messages[3]]],
        [[dates[2], times[2], names[2], msg]
        for msg in messages[4:]]
        ]

flatten = [item for sublist in data for item in sublist]

df = pd.DataFrame(flatten, columns=cols)
print(df)

哪个returns:

          date      time   name           message
0  2019-01-07   12:51 PM  name1    hi how are you
1  2019-01-07   12:51 PM  name1        im at home
2  2019-01-07   12:51 PM  name1  wanna come over?
3  2019-01-07   01:02 PM  name2         hell yeah
4  2019-01-07   01:06 PM  name1                 
5  2019-01-07   01:06 PM  name1    ill bring beer
6  2019-01-07   01:06 PM  name1           awesome
7  2019-01-07   01:06 PM  name1         and so on