如何对关联规则分析(先验)进行一次热编码数据框

How to One Hot Encode Dataframe for Association Rule Analysis (apriori)

我得到了一个模拟购物清单的数据框:

import pandas as pd

data = {'Produce':  ['Brocolli', 'Spinach','Spinach','Lettuce','Brocolli','Lettuce','Lettuce',],
        'Dairy': ['Milk', '','Milk','Cheese','Milk','Yogurt','Yogurt',],
        'Beverage': ['', '','Orange Juice','Soda','Soda','Orange juice','',],
        'Fruit': ['Brocolli', 'Spinach','Spinach','Lettuce','Brocolli','Lettuce','Lettuce',],
        'Poultry': ['Chicken Tender', 'Chicken Breasts','Chicken Tender','Chicken Thigh','Chicken Breasts','','Chicken Breasts',],
        'Deli': ['Turkey Breasts', 'Ham','Ham','','','Turkey Breasts','',],
       }

df = pd.DataFrame (data, columns = ['Produce','Dairy','Beverage','Fruit','Deli'])

df

我如何执行单热编码来转换此数据框,以便我可以 运行 先验地处理它(基本上所有独特的值作为列标签和值都替换为布尔值,据我所知)?

你可以试试:

pd.get_dummies(df)