将 API 数据存储到 DataFrame 中
Storing API Data Into A DataFrame
我是 运行 一个 Python 脚本,用于从 Interactive Brokers API 收集金融市场数据。连接到 API 后,终端打印出请求的历史数据。如何将数据保存到数据框中而不是在终端中流式传输?
from ibapi.wrapper import EWrapper
from ibapi.client import EClient
from ibapi.contract import Contract
from ibapi.ticktype import TickTypeEnum
class TestApp(EWrapper, EClient):
def __init__(self):
EClient.__init__(self,self)
def error(self, reqId, errorCode, errorString):
print("Error: ", reqId, " ", errorCode, " ", errorString)
def historicalData(self, reqId, bar):
print("historicalData. ", reqId, "Data:", bar.date, "Open:", bar.open, "High:", bar.high, "low:", bar.low, "close:", bar.close, "Volume:", bar.volume, "WAP:", bar.average)
def main():
app = TestApp()
app.connect("127.0.0.1", 7497, 0)
contract = Contract()
contract.symbol = "EUR"
contract.secType = "CASH"
contract.exchange = "IDEALPRO"
contract.currency = "USD"
app.reqHistoricalData(1, contract, "", "1 D", "1 min", "MIDPOINT", 0, 1, False, [])
app.run()
if __name__ == "__main__":
main()
代码的输出打印历史数据提要,例如:
historicalData. 1 Data: 20200616 11:53:00 Open: 1.125985 High: 1.12601 low: 1.12592 close: 1.12592 Volume: -1 WAP: -1.0
historicalData. 1 Data: 20200616 11:54:00 Open: 1.12592 High: 1.125925 low: 1.12583 close: 1.125885 Volume: -1 WAP: -1.0
historicalData. 1 Data: 20200616 11:55:00 Open: 1.125885 High: 1.126045 low: 1.125865 close: 1.126045 Volume: -1 WAP: -1.0
如何将此信息存储到数据框中而不是仅打印在终端中?
您可以在 TestApp 对象中创建一个数据框,然后在每次调用 historicalData() 时向其中添加一行。
def __init__(self):
...
self.df = pd.DataFrame(columns=['date', 'open', 'high', 'low', 'close', 'volume'])
def historicalData(self, reqId, bar):
self.df.loc[len(self.df)] = [bar.date, bar.open, bar.high, bar.low, bar.close, bar.volume]
您也可以使用 DataFrame.append() 函数。
返回所有历史数据后,将整个DataFrame写入数据库,然后清理原始DataFrame以供下一次循环使用。
我是 运行 一个 Python 脚本,用于从 Interactive Brokers API 收集金融市场数据。连接到 API 后,终端打印出请求的历史数据。如何将数据保存到数据框中而不是在终端中流式传输?
from ibapi.wrapper import EWrapper
from ibapi.client import EClient
from ibapi.contract import Contract
from ibapi.ticktype import TickTypeEnum
class TestApp(EWrapper, EClient):
def __init__(self):
EClient.__init__(self,self)
def error(self, reqId, errorCode, errorString):
print("Error: ", reqId, " ", errorCode, " ", errorString)
def historicalData(self, reqId, bar):
print("historicalData. ", reqId, "Data:", bar.date, "Open:", bar.open, "High:", bar.high, "low:", bar.low, "close:", bar.close, "Volume:", bar.volume, "WAP:", bar.average)
def main():
app = TestApp()
app.connect("127.0.0.1", 7497, 0)
contract = Contract()
contract.symbol = "EUR"
contract.secType = "CASH"
contract.exchange = "IDEALPRO"
contract.currency = "USD"
app.reqHistoricalData(1, contract, "", "1 D", "1 min", "MIDPOINT", 0, 1, False, [])
app.run()
if __name__ == "__main__":
main()
代码的输出打印历史数据提要,例如:
historicalData. 1 Data: 20200616 11:53:00 Open: 1.125985 High: 1.12601 low: 1.12592 close: 1.12592 Volume: -1 WAP: -1.0
historicalData. 1 Data: 20200616 11:54:00 Open: 1.12592 High: 1.125925 low: 1.12583 close: 1.125885 Volume: -1 WAP: -1.0
historicalData. 1 Data: 20200616 11:55:00 Open: 1.125885 High: 1.126045 low: 1.125865 close: 1.126045 Volume: -1 WAP: -1.0
如何将此信息存储到数据框中而不是仅打印在终端中?
您可以在 TestApp 对象中创建一个数据框,然后在每次调用 historicalData() 时向其中添加一行。
def __init__(self):
...
self.df = pd.DataFrame(columns=['date', 'open', 'high', 'low', 'close', 'volume'])
def historicalData(self, reqId, bar):
self.df.loc[len(self.df)] = [bar.date, bar.open, bar.high, bar.low, bar.close, bar.volume]
您也可以使用 DataFrame.append() 函数。
返回所有历史数据后,将整个DataFrame写入数据库,然后清理原始DataFrame以供下一次循环使用。