如何将 wav 写入 tfrecord 然后读回
How to write a wav to a tfrecord and then read it back
我正在尝试将编码的 wav 写入 tfrecord,然后将其读回。我知道我可以将 wav 写成普通张量,但我正在尝试保存 space.
我想做类似下面的事情,但不确定如何填写省略号。特别是,我不知道我应该保存为 int64 特征还是字节特征。
def wav_feature(wav):
value = tf.audio.encode_wav(wav, 44100)
return tf.train.Feature(...)
example = tf.train.Example(features=tf.train.Features(feature={
'foo': wav_feature(wav),
}))
with tf.io.TFRecordWriter(outpath) as writer:
writer.write(example.SerializeToString())
# In parser
features = tf.io.parse_single_example(
serialized=proto,
features={'foo': tf.io.FixedLenFeature([], ...)})
decoded, sr = tf.audio.decode_wav(features['foo'])
看起来像encode_wav
returns a string tensor,所以最好使用字节特征:
def _bytes_feature(value):
"""Returns a bytes_list from a string / byte."""
if isinstance(value, type(tf.constant(0))):
value = value.numpy() # BytesList won't unpack a string from an EagerTensor.
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
# Convert to a string tensor.
wav_encoded = tf.audio.encode_wav(wav, 44100)
feature = {'foo': _bytes_feature(wav_encoded)}
example = tf.train.Example(features=tf.train.Features(feature=feature))
然后,在解析器中:
features = tf.io.parse_single_example(
example.SerializeToString(),
features={'foo': tf.io.FixedLenFeature([], tf.string)})
# wav_encoded will be a string tensor.
wav_encoded = features['foo']
_bytes_feature
的定义是 here。
我正在尝试将编码的 wav 写入 tfrecord,然后将其读回。我知道我可以将 wav 写成普通张量,但我正在尝试保存 space.
我想做类似下面的事情,但不确定如何填写省略号。特别是,我不知道我应该保存为 int64 特征还是字节特征。
def wav_feature(wav):
value = tf.audio.encode_wav(wav, 44100)
return tf.train.Feature(...)
example = tf.train.Example(features=tf.train.Features(feature={
'foo': wav_feature(wav),
}))
with tf.io.TFRecordWriter(outpath) as writer:
writer.write(example.SerializeToString())
# In parser
features = tf.io.parse_single_example(
serialized=proto,
features={'foo': tf.io.FixedLenFeature([], ...)})
decoded, sr = tf.audio.decode_wav(features['foo'])
看起来像encode_wav
returns a string tensor,所以最好使用字节特征:
def _bytes_feature(value):
"""Returns a bytes_list from a string / byte."""
if isinstance(value, type(tf.constant(0))):
value = value.numpy() # BytesList won't unpack a string from an EagerTensor.
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
# Convert to a string tensor.
wav_encoded = tf.audio.encode_wav(wav, 44100)
feature = {'foo': _bytes_feature(wav_encoded)}
example = tf.train.Example(features=tf.train.Features(feature=feature))
然后,在解析器中:
features = tf.io.parse_single_example(
example.SerializeToString(),
features={'foo': tf.io.FixedLenFeature([], tf.string)})
# wav_encoded will be a string tensor.
wav_encoded = features['foo']
_bytes_feature
的定义是 here。