遍历数据框中的行并应用函数
Iterate through rows in dataframe and apply function
我创建了一个将数据帧作为输入的函数
df <- structure(list(flight="N912DE", origin_lon = -84.42778, origin_lat = 33.63667,
dest_lon = -87.90667, dest_lat = 41.9744), class = "data.frame",
row.names = c(NA, -1L))
get_coordinates <- function(df){
n = 5
df %>%
pivot_longer(cols = c(-flight),
names_to = c('col', '.value'),
names_sep = '_') %>%
summarise(flight,
lon = list(seq(max(lon), min(lon), length.out = n)),
lat = list(seq(min(lat), max(lat), length.out = n))) %>%
unnest(cols = c(flight,lat, lon))
}
但我现在想对数据帧的每一行应用相同的函数,并将所有生成的数据帧绑定到一个数据帧中。
我尝试遍历行但无法弄清楚。
我们可以 group_split
按行顺序,然后 map
在 list
上应用函数
library(dplyr)#1.0.0
library(purrr)
df %>%
group_split(rn = row_number(), .keep = FALSE) %>%
map_dfr(get_coordinates)
考虑一个包含两行和唯一航班号的数据框:
d <- structure(list(flight = c("N912DE", "ANCD123"), origin_lon = c(-84.42778,
-85), origin_lat = c(33.63667, 33.63667), dest_lon = c(-87.90667,
-87.90667), dest_lat = c(41.9744, 41.9744)),
row.names = c(NA, -2L), class = "data.frame")
对于每个 flight
,您可以在 summarise
中创建序列。
library(dplyr)
library(tidyr)
n <- 5
df %>%
pivot_longer(cols = c(-flight),
names_to = c('col', '.value'),
names_sep = '_') %>%
group_by(flight) %>%
summarise(lon = list(seq(max(lon), min(lon), length.out = n)),
lat = list(seq(min(lat), max(lat), length.out = n))) %>%
unnest(cols = c(lat, lon))
# A tibble: 10 x 3
# flight lon lat
# <chr> <dbl> <dbl>
# 1 ANCD123 -85 33.6
# 2 ANCD123 -85.7 35.7
# 3 ANCD123 -86.5 37.8
# 4 ANCD123 -87.2 39.9
# 5 ANCD123 -87.9 42.0
# 6 N912DE -84.4 33.6
# 7 N912DE -85.3 35.7
# 8 N912DE -86.2 37.8
# 9 N912DE -87.0 39.9
#10 N912DE -87.9 42.0
我创建了一个将数据帧作为输入的函数
df <- structure(list(flight="N912DE", origin_lon = -84.42778, origin_lat = 33.63667,
dest_lon = -87.90667, dest_lat = 41.9744), class = "data.frame",
row.names = c(NA, -1L))
get_coordinates <- function(df){
n = 5
df %>%
pivot_longer(cols = c(-flight),
names_to = c('col', '.value'),
names_sep = '_') %>%
summarise(flight,
lon = list(seq(max(lon), min(lon), length.out = n)),
lat = list(seq(min(lat), max(lat), length.out = n))) %>%
unnest(cols = c(flight,lat, lon))
}
但我现在想对数据帧的每一行应用相同的函数,并将所有生成的数据帧绑定到一个数据帧中。
我尝试遍历行但无法弄清楚。
我们可以 group_split
按行顺序,然后 map
在 list
上应用函数
library(dplyr)#1.0.0
library(purrr)
df %>%
group_split(rn = row_number(), .keep = FALSE) %>%
map_dfr(get_coordinates)
考虑一个包含两行和唯一航班号的数据框:
d <- structure(list(flight = c("N912DE", "ANCD123"), origin_lon = c(-84.42778,
-85), origin_lat = c(33.63667, 33.63667), dest_lon = c(-87.90667,
-87.90667), dest_lat = c(41.9744, 41.9744)),
row.names = c(NA, -2L), class = "data.frame")
对于每个 flight
,您可以在 summarise
中创建序列。
library(dplyr)
library(tidyr)
n <- 5
df %>%
pivot_longer(cols = c(-flight),
names_to = c('col', '.value'),
names_sep = '_') %>%
group_by(flight) %>%
summarise(lon = list(seq(max(lon), min(lon), length.out = n)),
lat = list(seq(min(lat), max(lat), length.out = n))) %>%
unnest(cols = c(lat, lon))
# A tibble: 10 x 3
# flight lon lat
# <chr> <dbl> <dbl>
# 1 ANCD123 -85 33.6
# 2 ANCD123 -85.7 35.7
# 3 ANCD123 -86.5 37.8
# 4 ANCD123 -87.2 39.9
# 5 ANCD123 -87.9 42.0
# 6 N912DE -84.4 33.6
# 7 N912DE -85.3 35.7
# 8 N912DE -86.2 37.8
# 9 N912DE -87.0 39.9
#10 N912DE -87.9 42.0