在张量流中找到两个边界框的交集?
to find the intersection of two bounding box in tensorflow?
系统坐标为
boundary coordinates (x_min, y_min, x_max, y_max).
我想找到两个框 set1 和 set2 的交集
set1 -> (n1,4)
set2 -> (n2,4)
example
set_1-> tensor([[0.2400, 0.2342, 0.8500, 0.8048],
[0.1420, 0.5075, 0.2440, 0.5856],
[0.0000, 0.5075, 0.1420, 0.5976]], device='cuda:0')
set_2-> tensor([[-0.0368, -0.0368, 0.0632, 0.0632],
[-0.0576, -0.0576, 0.0839, 0.0839],
[-0.0576, -0.0222, 0.0839, 0.0485],
...,
[ 0.0000, 0.0000, 1.0000, 1.0000],
[ 0.0000, 0.1818, 1.0000, 0.8182],
[ 0.1818, 0.0000, 0.8182, 1.0000]], device='cuda:0') torch.Size([8732, 4])
如果我想得到两组边界框的交集
:return: intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
我应该如何在 python 和 tensorflow 中写这个?
def find_intersection(set_1, set_2):
"""
Find the intersection of every box combination between two sets of boxes that are in boundary coordinates.
:param set_1: set 1, a tensor of dimensions (n1, 4)
:param set_2: set 2, a tensor of dimensions (n2, 4)
:return: intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
"""
print('set1->',set_1)
print('set_2->',set_2)
return tf.sets.intersection(set_1,set_2)
def find_jaccard_overlap(set_1, set_2):
"""
Find the Jaccard Overlap (IoU) of every box combination between two sets of boxes that are in boundary coordinates.
:param set_1: set 1, a tensor of dimensions (n1, 4)
:param set_2: set 2, a tensor of dimensions (n2, 4)
:return: Jaccard Overlap of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
"""
# Find intersections
intersection = find_intersection(set_1, set_2) # (n1, n2)
print('intersection->', intersection)
# Find areas of each box in both sets
areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1]) # (n1)
areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1]) # (n2)
# Find the union
# PyTorch auto-broadcasts singleton dimensions
union = areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersection # (n1, n2)
return intersection / union # (n1, n2)
你可以这样做:
import tensorflow as tf
def box_intersections(set1, set2):
set1 = tf.expand_dims(set1, axis=-1)
x_min = tf.math.maximum(set1[:, 0], set2[:, 0])
y_min = tf.math.maximum(set1[:, 1], set2[:, 1])
x_max = tf.math.minimum(set1[:, 2], set2[:, 2])
y_max = tf.math.minimum(set1[:, 3], set2[:, 3])
dx = tf.math.maximum(x_max - x_min, 0)
dy = tf.math.maximum(y_max - y_min, 0)
return dx * dy
# Example
tf.random.set_seed(0)
# Make random boxes
n1 = 10
n2 = 20
set1 = tf.random.uniform((n1, 2))
set1 = tf.concat([set1, set1 + tf.random.uniform((n1, 2))], axis=1)
set2 = tf.random.uniform((n2, 2))
set2 = tf.concat([set2, set2 + tf.random.uniform((n2, 2))], axis=1)
# Compute intersections
intersect = box_intersections(set1, set2)
print(intersect.shape)
# (10, 20)
系统坐标为
boundary coordinates (x_min, y_min, x_max, y_max).
我想找到两个框 set1 和 set2 的交集
set1 -> (n1,4)
set2 -> (n2,4)
example
set_1-> tensor([[0.2400, 0.2342, 0.8500, 0.8048],
[0.1420, 0.5075, 0.2440, 0.5856],
[0.0000, 0.5075, 0.1420, 0.5976]], device='cuda:0')
set_2-> tensor([[-0.0368, -0.0368, 0.0632, 0.0632],
[-0.0576, -0.0576, 0.0839, 0.0839],
[-0.0576, -0.0222, 0.0839, 0.0485],
...,
[ 0.0000, 0.0000, 1.0000, 1.0000],
[ 0.0000, 0.1818, 1.0000, 0.8182],
[ 0.1818, 0.0000, 0.8182, 1.0000]], device='cuda:0') torch.Size([8732, 4])
如果我想得到两组边界框的交集
:return: intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
我应该如何在 python 和 tensorflow 中写这个?
def find_intersection(set_1, set_2):
"""
Find the intersection of every box combination between two sets of boxes that are in boundary coordinates.
:param set_1: set 1, a tensor of dimensions (n1, 4)
:param set_2: set 2, a tensor of dimensions (n2, 4)
:return: intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
"""
print('set1->',set_1)
print('set_2->',set_2)
return tf.sets.intersection(set_1,set_2)
def find_jaccard_overlap(set_1, set_2):
"""
Find the Jaccard Overlap (IoU) of every box combination between two sets of boxes that are in boundary coordinates.
:param set_1: set 1, a tensor of dimensions (n1, 4)
:param set_2: set 2, a tensor of dimensions (n2, 4)
:return: Jaccard Overlap of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
"""
# Find intersections
intersection = find_intersection(set_1, set_2) # (n1, n2)
print('intersection->', intersection)
# Find areas of each box in both sets
areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1]) # (n1)
areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1]) # (n2)
# Find the union
# PyTorch auto-broadcasts singleton dimensions
union = areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersection # (n1, n2)
return intersection / union # (n1, n2)
你可以这样做:
import tensorflow as tf
def box_intersections(set1, set2):
set1 = tf.expand_dims(set1, axis=-1)
x_min = tf.math.maximum(set1[:, 0], set2[:, 0])
y_min = tf.math.maximum(set1[:, 1], set2[:, 1])
x_max = tf.math.minimum(set1[:, 2], set2[:, 2])
y_max = tf.math.minimum(set1[:, 3], set2[:, 3])
dx = tf.math.maximum(x_max - x_min, 0)
dy = tf.math.maximum(y_max - y_min, 0)
return dx * dy
# Example
tf.random.set_seed(0)
# Make random boxes
n1 = 10
n2 = 20
set1 = tf.random.uniform((n1, 2))
set1 = tf.concat([set1, set1 + tf.random.uniform((n1, 2))], axis=1)
set2 = tf.random.uniform((n2, 2))
set2 = tf.concat([set2, set2 + tf.random.uniform((n2, 2))], axis=1)
# Compute intersections
intersect = box_intersections(set1, set2)
print(intersect.shape)
# (10, 20)