如何基于元组元素进行递归?

How to do recursion based on tuple elements?

我不确定这是否可行,但我希望能够基于元组的元素递归调用函数。因此,例如 std::tuple<int,float,double> 这样的元组应该调用 expand_nested 3 次,然后使用 intfloat 或 [=15] 类型的参数调用它的回调函数=].

#include <tuple>
#include <vector>
#include <functional>

template <typename T>
struct tree_item
{
    T param;
    std::function<void(T)> callback;
};

template <typename... Ts>
struct tuple_node
{
    std::tuple<Ts...> tupl;
};

// recursion base case
template <typename T>
void expand_nested(tree_item<T> ti)
{
    ti.callback(ti.param);
}

// recursive function
template <typename T>
void expand_nested(tree_item<T> ti, tree_item<T> rest...)
{
    ti.callback(ti.param);
    expand_nested(ti, rest...);
}

template <typename... Ts>
void expand_root(tuple_node<Ts...> nodes)
{
    auto current = std::get<1>(nodes.tupl);
    auto rest = std::get<...>(nodes.tupl); // Made up syntax that doesn't work
    // How can I fill the "rest" variable with the remaining elements of the "nodes.tupl" tuple?

    expand_nested(current, rest...);
}

int main()
{
    tuple_node<tree_item<int>, tree_item<float>> nodes;

    tree_item<int> tree_int;
    tree_item<float> tree_float;
    tree_item<double> tree_double;

    tuple_node<tree_item<int>, tree_item<float>, tree_item<double>> node;
    node.tupl = std::make_tuple(tree_int, tree_float, tree_double);

    expand_root(nodes);
}

expand_nested 中参数包的语法应为:

template <typename T, typename ... Rest>
void expand_nested(tree_item<T> ti, tree_item<Rest>... rest)

这个

ti.callback(ti.param);
expand_nested(ti, rest...);

会给你无限递归(你正在调用同一个函数,使用与第一次调用相同数量的参数),它应该看起来像:

template <typename T, typename ... Rest>
void expand_nested(tree_item<T> ti, tree_item<Rest>... rest)
{
    ti.callback(ti.param);    // process ti
    expand_nested(rest...);   // don't pass ti, pass only the rest to further processing
}

从 C++17 开始,有一种简单的方法可以提取元组的所有元素 - 使用 std::apply:

template <typename... Ts>
void expand_root(tuple_node<Ts...> nodes)
{
    std::apply([](auto&... tupleItems){ 
        expand_nested(tupleItems...); }, nodes.tupl);
}

Full demo

这在 C++20 中相当简单:

#include <iostream>
#include <tuple>


template<typename T>
void func(T t)
{
    std::cout << t << std::endl;
}

int main()
{
    std::tuple<int,float,double> f{1,2,3};

    std::apply([]<typename ...Args>(Args && ...args)
           {
               (func(args), ...);
           }, f);
}

这需要多做一些工作,以仅支持 C++11 或更高版本:

#include <iostream>
#include <tuple>
#include <utility>

template<typename T>
void func(T t)
{
    std::cout << t << std::endl;
}

template<typename T, size_t s, size_t n=0>
struct call_func {

    static void doit(T &t)
    {
        func(std::get<n>(t));

        call_func<T, s, n+1>::doit(t);
    }
};

template<typename T, size_t s>
struct call_func<T, s, s> {

    static void doit(T &t)
    {
    }
};

template<typename ...Args>
void do_callfunc(std::tuple<Args...> &t)
{
    call_func<std::tuple<Args...>, sizeof...(Args), 0>::doit(t);
}

int main()
{
    std::tuple<int,float,double> f{1,2,3};

    do_callfunc(f);
}

你确定你需要递归吗?

如果可以使用 C++17,模板折叠呢?

template <typename... Ts, std::size_t ... Is>
void expand_root_helper (tuple_node<Ts...> nodes, std::index_sequence<Is...>)
 { ((void)std::get<Is>(nodes.tupl).callback(
             std::get<Is>(nodes.tupl).param), ...); }

template <typename... Ts>
void expand_root (tuple_node<Ts...> nodes)
 { expand_root_helper(nodes, std::index_sequence_for<Ts...>{}); }

在 C++11/C++14 中有点复杂(没有模板折叠)但是你的辅助函数可以如下模拟它

template <typename... Ts, std::size_t ... Is>
void expand_root_helper (tuple_node<Ts...> nodes, std::index_sequence<Is...>)
 {
   using unused = int[];

   (void)unused { 0, ((void)std::get<Is>(nodes.tupl).callback(
                               std::get<Is>(nodes.tupl).param), 0)... };
 }

我不确定你是否需要你的扩展函数来做任何其他事情,但是从 c++17 开始你可以用 std::apply.

在一行代码中做到这一点
#include <tuple>
#include <vector>
#include <functional>

template <typename T>
struct tree_item
{
    T param;
    std::function<void(T)> callback;
};

template <typename... Ts>
struct tuple_node
{
    std::tuple<Ts...> tupl;
};

int main()
{
    tuple_node<tree_item<int>, tree_item<float>> nodes;

    tree_item<int> tree_int;
    tree_item<float> tree_float;
    tree_item<double> tree_double;

    tuple_node<tree_item<int>, tree_item<float>, tree_item<double>> node;
    node.tupl = std::make_tuple(tree_int, tree_float, tree_double);

    std::apply([](auto&&... args){
        (args.callback(args.param), ...);
    }, node.tupl);
}