在底图中部分填充 shapefile 多边形
Filling shapefile polygons partially in basemap
我想使用 basemap/shapefile 数据填充多边形,但只能填充一定的百分比。例如,在下面的示例中,我们根据值进行填充,但假设我想根据这些值填充 % 的多边形(来自 的代码):
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
import numpy as np
fig= plt.figure()
ax= fig.add_subplot(111)
m=Basemap(projection='cyl',llcrnrlat=34.5,llcrnrlon=19,
urcrnrlat=42,urcrnrlon=28.5,resolution='h')
m.drawmapboundary(fill_color='aqua')
m.fillcontinents(color='w',lake_color='aqua')
m.drawcoastlines()
m.readshapefile('data/nomoi/nomoi','nomoi')
dict1={14464: 1.16, 14465: 1.35, 14466: 1.28, 14467: 1.69, 14468: 1.81, 14418: 1.38}
colvals = dict1.values()
cmap=plt.cm.RdYlBu
norm=plt.Normalize(min(colvals),max(colvals))
patches = []
for info, shape in zip(m.nomoi_info, m.nomoi):
if info['ID_2'] in list(dict1.keys()):
color=cmap(norm(dict1[info['ID_2']]))
patches.append( Polygon(np.array(shape), True, color=color) )
pc = PatchCollection(patches, match_original=True, edgecolor='k', linewidths=1., zorder=2)
ax.add_collection(pc)
#colorbar
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
sm.set_array(colvals)
fig.colorbar(sm, ax=ax)
plt.show()
谢谢。
import math
from shapely.geometry import Polygon as shpoly
#shapefile of main massachusetts shape
iowpoly = state_shapes['Massachusetts'][32]
def return_xy(coords):
return [np.asarray([i[0] for i in coords]), np.asarray([i[1] for i in coords])]
def return_area(coords):
x, y = return_xy(coords)
return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1)))
def return_bounding_box(coords):
x, y = return_xy(coords)
return [[min(x), min(y)], [max(x), max(y)]]
def split_x_wise(bbox, weights, split = 2):
lleft = bbox[0]
uright = bbox[1]
dx = abs(uright[0] - lleft[0])
weights = np.cumsum(sorted(weights, reverse=True))
xcoords = [lleft[0]+weights[x-1]*dx for x in range(1, split)]
return xcoords
def generate_splits_by_area(coords, bbox, weights, tolerance = 0.03, div = 100):
xareasplits = {}
weights = np.cumsum(sorted(weights, reverse=True))[:-1]
lleft = bbox[0]
uright = bbox[1]
dx = abs(uright[0] - lleft[0])
xsplit = [lleft[0]+(dx/div)*x for x in range(1, div)]
for w in weights:
xareasplits[str(w)] = None
mainarea = shpoly(coords).area
for i, s in enumerate(xsplit):
poly = []
if i == 0:
continue
for ip, p in enumerate(coords):
if p[0] < s:
poly.append(p)
shpl = shpoly(poly).area
frac = shpl/mainarea
for w in weights:
if abs(w-frac) <= tolerance:
if xareasplits[str(w)] == None:
xareasplits[str(w)] = s
return list(xareasplits.values())
def return_split(coords, weights, split = 2, by_area = False, tolerance = 0.03, div = 100):
polys = {}
for x in range(0, split):
polys[str(x+1)] = {'points':[], 'maxit' : None}
bbox = return_bounding_box(coords)
if not by_area:
xsplit = split_x_wise(bbox, weights, split)
#test = generate_splits_by_area(coords, bbox, weights, tolerance=tolerance, div=div)
else:
xsplit = generate_splits_by_area(coords, bbox, weights, tolerance=tolerance, div=div)
xsplit.append(bbox[0][0])
xsplit.append(bbox[1][0])
xsplit = sorted(xsplit)
#print(xsplit)
#print(test)
for ip, p in enumerate(coords):
for i, splt in enumerate(xsplit):
if i > 0:
if (p[0] > xsplit[i-1]) & (p[0] < splt):
if len(polys[str(i)]['points']) == 0:
polys[str(i)]['points'].append(coords[ip-1])
polys[str(i)]['points'].append(p)
polys[str(i)]['maxit'] = ip
for poly, data in polys.items():
tmaxit = data['maxit']+1
if tmaxit >= len(coords):
data['points'].append(coords[0])
else:
data['points'].append(coords[tmaxit])
return polys
#return [p for p in coords if p[0] > xsplit[0]]
#bboxiowa = return_bounding_box(iowpoly)
splitpoly = return_split(iowpoly, weights = [0.2780539772727273, 0.1953716856060606, 0.19513494318181818, 0.18329782196969696, 0.14814157196969696],by_area = True,split = 5)
for k, v in splitpoly.items():
print (k, len(v['points']))
print (v['maxit'])
test = shpoly(splitpoly["1"]['points'])
test
我设法编写了自己的代码来从 shapefile 中拆分和填充 shape 多边形。上面的代码示例将马萨诸塞州的 shapefile 分成 5 段,根据权重和面积加权。
拆分的前两部分如下所示:
我想使用 basemap/shapefile 数据填充多边形,但只能填充一定的百分比。例如,在下面的示例中,我们根据值进行填充,但假设我想根据这些值填充 % 的多边形(来自
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
import numpy as np
fig= plt.figure()
ax= fig.add_subplot(111)
m=Basemap(projection='cyl',llcrnrlat=34.5,llcrnrlon=19,
urcrnrlat=42,urcrnrlon=28.5,resolution='h')
m.drawmapboundary(fill_color='aqua')
m.fillcontinents(color='w',lake_color='aqua')
m.drawcoastlines()
m.readshapefile('data/nomoi/nomoi','nomoi')
dict1={14464: 1.16, 14465: 1.35, 14466: 1.28, 14467: 1.69, 14468: 1.81, 14418: 1.38}
colvals = dict1.values()
cmap=plt.cm.RdYlBu
norm=plt.Normalize(min(colvals),max(colvals))
patches = []
for info, shape in zip(m.nomoi_info, m.nomoi):
if info['ID_2'] in list(dict1.keys()):
color=cmap(norm(dict1[info['ID_2']]))
patches.append( Polygon(np.array(shape), True, color=color) )
pc = PatchCollection(patches, match_original=True, edgecolor='k', linewidths=1., zorder=2)
ax.add_collection(pc)
#colorbar
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
sm.set_array(colvals)
fig.colorbar(sm, ax=ax)
plt.show()
谢谢。
import math
from shapely.geometry import Polygon as shpoly
#shapefile of main massachusetts shape
iowpoly = state_shapes['Massachusetts'][32]
def return_xy(coords):
return [np.asarray([i[0] for i in coords]), np.asarray([i[1] for i in coords])]
def return_area(coords):
x, y = return_xy(coords)
return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1)))
def return_bounding_box(coords):
x, y = return_xy(coords)
return [[min(x), min(y)], [max(x), max(y)]]
def split_x_wise(bbox, weights, split = 2):
lleft = bbox[0]
uright = bbox[1]
dx = abs(uright[0] - lleft[0])
weights = np.cumsum(sorted(weights, reverse=True))
xcoords = [lleft[0]+weights[x-1]*dx for x in range(1, split)]
return xcoords
def generate_splits_by_area(coords, bbox, weights, tolerance = 0.03, div = 100):
xareasplits = {}
weights = np.cumsum(sorted(weights, reverse=True))[:-1]
lleft = bbox[0]
uright = bbox[1]
dx = abs(uright[0] - lleft[0])
xsplit = [lleft[0]+(dx/div)*x for x in range(1, div)]
for w in weights:
xareasplits[str(w)] = None
mainarea = shpoly(coords).area
for i, s in enumerate(xsplit):
poly = []
if i == 0:
continue
for ip, p in enumerate(coords):
if p[0] < s:
poly.append(p)
shpl = shpoly(poly).area
frac = shpl/mainarea
for w in weights:
if abs(w-frac) <= tolerance:
if xareasplits[str(w)] == None:
xareasplits[str(w)] = s
return list(xareasplits.values())
def return_split(coords, weights, split = 2, by_area = False, tolerance = 0.03, div = 100):
polys = {}
for x in range(0, split):
polys[str(x+1)] = {'points':[], 'maxit' : None}
bbox = return_bounding_box(coords)
if not by_area:
xsplit = split_x_wise(bbox, weights, split)
#test = generate_splits_by_area(coords, bbox, weights, tolerance=tolerance, div=div)
else:
xsplit = generate_splits_by_area(coords, bbox, weights, tolerance=tolerance, div=div)
xsplit.append(bbox[0][0])
xsplit.append(bbox[1][0])
xsplit = sorted(xsplit)
#print(xsplit)
#print(test)
for ip, p in enumerate(coords):
for i, splt in enumerate(xsplit):
if i > 0:
if (p[0] > xsplit[i-1]) & (p[0] < splt):
if len(polys[str(i)]['points']) == 0:
polys[str(i)]['points'].append(coords[ip-1])
polys[str(i)]['points'].append(p)
polys[str(i)]['maxit'] = ip
for poly, data in polys.items():
tmaxit = data['maxit']+1
if tmaxit >= len(coords):
data['points'].append(coords[0])
else:
data['points'].append(coords[tmaxit])
return polys
#return [p for p in coords if p[0] > xsplit[0]]
#bboxiowa = return_bounding_box(iowpoly)
splitpoly = return_split(iowpoly, weights = [0.2780539772727273, 0.1953716856060606, 0.19513494318181818, 0.18329782196969696, 0.14814157196969696],by_area = True,split = 5)
for k, v in splitpoly.items():
print (k, len(v['points']))
print (v['maxit'])
test = shpoly(splitpoly["1"]['points'])
test
我设法编写了自己的代码来从 shapefile 中拆分和填充 shape 多边形。上面的代码示例将马萨诸塞州的 shapefile 分成 5 段,根据权重和面积加权。
拆分的前两部分如下所示: