"fit() missing 1 required positional argument: 'y'" 错误
"fit() missing 1 required positional argument: 'y'" error
我一直在尝试使用 sklearn 为线性回归模型创建一些测试数据。我收到的错误是“fit() 缺少 1 个必需的位置参数:'y'”
from sklearn.model_selection import train_test_split
X = df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
'Avg. Area Number of Bedrooms', 'Area Population']]
y = df['Price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)
from sklearn.linear_model import LinearRegression
lm = LinearRegression
lm.fit(X_train,y_train)
我试过查看此 link ' 但我无法修复它。
尝试
from sklearn.model_selection import train_test_split
X = df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
'Avg. Area Number of Bedrooms', 'Area Population']]
y = df['Price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train,y_train)
你在 lm = LinearRegression
之后忘记了 ()
你最后忘记了()
。代码应该是,
lm = LinearRegression()
而不是
lm = LinearRegression
我一直在尝试使用 sklearn 为线性回归模型创建一些测试数据。我收到的错误是“fit() 缺少 1 个必需的位置参数:'y'”
from sklearn.model_selection import train_test_split
X = df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
'Avg. Area Number of Bedrooms', 'Area Population']]
y = df['Price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)
from sklearn.linear_model import LinearRegression
lm = LinearRegression
lm.fit(X_train,y_train)
我试过查看此 link ' 但我无法修复它。
尝试
from sklearn.model_selection import train_test_split
X = df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
'Avg. Area Number of Bedrooms', 'Area Population']]
y = df['Price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train,y_train)
你在 lm = LinearRegression
()
你最后忘记了()
。代码应该是,
lm = LinearRegression()
而不是
lm = LinearRegression