在 R 中统计几列分类变量

Tally several columns of categorical variables in R

我有调查数据,受访者在李克特量表上对几个项目进行了评分,如下所示:

id  item1                   item2                   item3                   item4

42  Moderately adequate     Completely adequate     Very adequate           Very adequate
48  Moderately adequate     Moderately adequate     Moderately adequate     Moderately adequate
49  Moderately adequate     Moderately adequate     Moderately adequate     Moderately adequate
50  Slightly adequate       Slightly adequate       Slightly adequate       Not at all adequate

我想将其转换为一个数据结构,对于每个项目,它都有它收到的评级计数,如下所示:

rating              item1       item2       item3       item4

Not at all adequate     0           0           0           1
Slightly adequate       1           1           1
Moderately adequate     3           2           2           2
Very adequate           0           0           1           1
Completely adequate     0           1           0           0

重塑此数据的最有效方法是什么?我已经试过 dcast(data = melt(data, id.vars = "id"), value ~.),但这是对所有四个项目的评分总和,而不是将每个项目保留在其自己的列中; counttally 同样的问题。我可以逐项执行此操作,然后将这些列重新合并在一起,但似乎必须有一种更简单的方法,尤其是因为我需要在多个不同的项目列表中复制它。

以长格式获取数据,count并以宽格式获取数据:

library(dplyr)
library(tidyr)

data %>%
  pivot_longer(cols = -id) %>%
  count(name, value) %>%
  pivot_wider(names_from = name, values_from = n, values_fill = list(n = 0))

# A tibble: 5 x 5
#  value               item1 item2 item3 item4
#  <chr>               <int> <int> <int> <int>
#1 Moderately_adequate     3     2     2     2
#2 Slightly_adequate       1     1     1     0
#3 Completely_adequate     0     1     0     0
#4 Very_adequate           0     0     1     1
#5 Not_at_all_adequate     0     0     0     1

数据

我在 item 列的值中添加了下划线,因为很难复制带有空格的数据。

data <- structure(list(id = c(42L, 48L, 49L, 50L),item1 = c("Moderately_adequate",
"Moderately_adequate", "Moderately_adequate", "Slightly_adequate"
), item2 = c("Completely_adequate", "Moderately_adequate", "Moderately_adequate",
"Slightly_adequate"), item3 = c("Very_adequate", "Moderately_adequate", 
"Moderately_adequate", "Slightly_adequate"), item4 = c("Very_adequate", 
"Moderately_adequate", "Moderately_adequate", "Not_at_all_adequate"
)), class = "data.frame", row.names = c(NA, -4L))