NameError: name 'rabinerJuangStepPattern' is not defined when using dtw
NameError: name 'rabinerJuangStepPattern' is not defined when using dtw
我正在尝试 运行 来自 Kaggle 的代码。使用 DTW 对时间序列进行聚类。
更具体的部分:
在[24/25]:
"""
From a list of series, compute a distance matrix by computing the
DTW distance of all pairwise combinations of series.
"""
diff_matrix = {}
cross = itertools.product(cols, cols)
for (col1, col2) in cross:
series1 = daily_sales_item_lookup_scaled_weekly[col1]
series2 = daily_sales_item_lookup_scaled_weekly[col2]
diff = dtw(
series1,
series2,
keep_internals=True,
step_pattern=rabinerJuangStepPattern(2, "c")
)\
.normalizedDistance
diff_matrix[(col1, col2)] = [diff]
return diff_matrix
作为参数之一,作者声称“step_pattern=rabinerJuangStepPattern(2, "c"))”但是,当我 运行 它时,我得到了提到的错误。
有谁知道可能出了什么问题?
谢谢!
您需要先像这样从 dtw 包中导入此函数:
from dtw import *
如果你滚动到 Kaggle 页面的顶部,你可以看到它也被导入那里。
我正在尝试 运行 来自 Kaggle 的代码。使用 DTW 对时间序列进行聚类。 更具体的部分: 在[24/25]:
"""
From a list of series, compute a distance matrix by computing the
DTW distance of all pairwise combinations of series.
"""
diff_matrix = {}
cross = itertools.product(cols, cols)
for (col1, col2) in cross:
series1 = daily_sales_item_lookup_scaled_weekly[col1]
series2 = daily_sales_item_lookup_scaled_weekly[col2]
diff = dtw(
series1,
series2,
keep_internals=True,
step_pattern=rabinerJuangStepPattern(2, "c")
)\
.normalizedDistance
diff_matrix[(col1, col2)] = [diff]
return diff_matrix
作为参数之一,作者声称“step_pattern=rabinerJuangStepPattern(2, "c"))”但是,当我 运行 它时,我得到了提到的错误。 有谁知道可能出了什么问题?
谢谢!
您需要先像这样从 dtw 包中导入此函数:
from dtw import *
如果你滚动到 Kaggle 页面的顶部,你可以看到它也被导入那里。