未显示已达到的占用列是 Nsight 分析结果
Achieved Occupancy column is not shown is Nsight Profiling result
我遇到了一个对我来说很奇怪的问题。我在 Nsight 性能分析输出中看不到实现的占用列。我使用的是 Geforce 920M GPU,NVIDIA 驱动程序版本 425.31,Nsight 版本 6.0.0.18296 和 visual studio 2017。Nsight 的版本与驱动程序兼容。
谁能帮我吗?我完全不知道为什么会这样。
我使用 Nsight 性能分析和 CUDA 跟踪检查如下:
我也使用了 Visual Profiler,但在那里也看不到实现的占用率。
并且 GPU 检查给出了一个错误:
- 请注意,正如 talonmies 提到的,上述错误是由于 运行 分析器未处于管理员模式。并且解决了但是实现入住还是没有显示。
这是我的代码:
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include <math.h>
#include <iostream>
#define MAX_HISTORGRAM_NUMBER 10000
#define ARRAY_SIZE 102400000
#define CHUNK_SIZE 100
#define THREAD_COUNT 8
#define SCALER 80
cudaError_t histogramWithCuda(int *a, unsigned long long int *c);
__global__ void histogramKernelSingle(unsigned long long int *c, int *a)
{
unsigned long long int worker = blockIdx.x*blockDim.x + threadIdx.x;
unsigned long long int start = worker * CHUNK_SIZE;
unsigned long long int end = start + CHUNK_SIZE;
for (int ex = 0; ex < SCALER; ex++)
for (long long int i = start; i < end; i++)
{
if (i < ARRAY_SIZE)
atomicAdd(&c[a[i]], 1);
else
{
break;
}
}
}
int main()
{
int* a = (int*)malloc(sizeof(int)*ARRAY_SIZE);
unsigned long long int* c = (unsigned long long int*)malloc(sizeof(unsigned long long int)*MAX_HISTORGRAM_NUMBER);
for (unsigned long long i = 0; i < ARRAY_SIZE;i++)
a[i] = rand() % MAX_HISTORGRAM_NUMBER;
for (unsigned long long i = 0; i < MAX_HISTORGRAM_NUMBER; i++)
c[i] = 0;
// Add vectors in parallel.
double start_time = omp_get_wtime();
cudaError_t cudaStatus=histogramWithCuda(a,c);
double end_time = omp_get_wtime();
std::cout << end_time - start_time;
// =
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addWithCuda failed!");
return 1;
}
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceReset failed!");
return 1;
}
unsigned long long int R = 0;
for (int i = 0; i < MAX_HISTORGRAM_NUMBER; i++)
{
R += c[i];
//printf("%d ", c[i]);
}
printf("\nCORRECT:%ld ", R/(SCALER));
return 0;
}
// Helper function for using CUDA to add vectors in parallel.
cudaError_t histogramWithCuda(int *a, unsigned long long int *c)
{
int *dev_a = 0;
unsigned long long int *dev_c = 0;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
// Allocate GPU buffers for three vectors (two input, one output) .
cudaStatus = cudaMalloc((void**)&dev_c, MAX_HISTORGRAM_NUMBER * sizeof(unsigned long long int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_a, ARRAY_SIZE * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev_a, a, ARRAY_SIZE * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
// Launch a kernel on the GPU with one thread for each element.
//// BLOCK CALCULATOR HERE
////BLOCK CALCULATOR HERE
histogramKernelSingle << < ARRAY_SIZE / (THREAD_COUNT*CHUNK_SIZE), THREAD_COUNT>> > (dev_c, dev_a);
// Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
goto Error;
}
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
goto Error;
}
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev_c, MAX_HISTORGRAM_NUMBER * sizeof(unsigned long long int), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
Error:
cudaFree(dev_c);
cudaFree(dev_a);
return cudaStatus;
}
提前致谢。
仅在配置文件 Activity 中捕获已实现的入住率。 Trace Activity 不支持捕获 GPU 性能计数器。实现的入住率是 sm__active_warps_sum / sm__actice_cycles_sum / SM__MAX_WARPS * 100.
Nsight Visual Studio 版本
Trace Activity 无法收集 Achieved Occupancy。 运行 命令 Nsight |开始性能分析...并在 Activity window select 配置文件 CUDA 应用程序(不是跟踪应用程序)中。默认配置文件 CUDA 应用程序包含实验 Achieved Occupancy。
NVIDIA Visual Profiler
在 NVVP 中确保您正在收集 GPU 性能计数器。默认 activity 将收集时间线但不会收集 GPU 事件。
运行 |生成时间线不会收集 Achieved Occupancy
运行 |分析应用程序将收集 Achieved Occupancy
如果您仍然遇到问题,那么您的系统权限可能有问题。请尝试使用 Nsight 配置文件 CUDA 应用程序或 NVVP | 收集另一组性能计数器收集指标和事件...
我遇到了一个对我来说很奇怪的问题。我在 Nsight 性能分析输出中看不到实现的占用列。我使用的是 Geforce 920M GPU,NVIDIA 驱动程序版本 425.31,Nsight 版本 6.0.0.18296 和 visual studio 2017。Nsight 的版本与驱动程序兼容。 谁能帮我吗?我完全不知道为什么会这样。
我使用 Nsight 性能分析和 CUDA 跟踪检查如下:
我也使用了 Visual Profiler,但在那里也看不到实现的占用率。
- 请注意,正如 talonmies 提到的,上述错误是由于 运行 分析器未处于管理员模式。并且解决了但是实现入住还是没有显示。
这是我的代码:
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include <math.h>
#include <iostream>
#define MAX_HISTORGRAM_NUMBER 10000
#define ARRAY_SIZE 102400000
#define CHUNK_SIZE 100
#define THREAD_COUNT 8
#define SCALER 80
cudaError_t histogramWithCuda(int *a, unsigned long long int *c);
__global__ void histogramKernelSingle(unsigned long long int *c, int *a)
{
unsigned long long int worker = blockIdx.x*blockDim.x + threadIdx.x;
unsigned long long int start = worker * CHUNK_SIZE;
unsigned long long int end = start + CHUNK_SIZE;
for (int ex = 0; ex < SCALER; ex++)
for (long long int i = start; i < end; i++)
{
if (i < ARRAY_SIZE)
atomicAdd(&c[a[i]], 1);
else
{
break;
}
}
}
int main()
{
int* a = (int*)malloc(sizeof(int)*ARRAY_SIZE);
unsigned long long int* c = (unsigned long long int*)malloc(sizeof(unsigned long long int)*MAX_HISTORGRAM_NUMBER);
for (unsigned long long i = 0; i < ARRAY_SIZE;i++)
a[i] = rand() % MAX_HISTORGRAM_NUMBER;
for (unsigned long long i = 0; i < MAX_HISTORGRAM_NUMBER; i++)
c[i] = 0;
// Add vectors in parallel.
double start_time = omp_get_wtime();
cudaError_t cudaStatus=histogramWithCuda(a,c);
double end_time = omp_get_wtime();
std::cout << end_time - start_time;
// =
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addWithCuda failed!");
return 1;
}
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceReset failed!");
return 1;
}
unsigned long long int R = 0;
for (int i = 0; i < MAX_HISTORGRAM_NUMBER; i++)
{
R += c[i];
//printf("%d ", c[i]);
}
printf("\nCORRECT:%ld ", R/(SCALER));
return 0;
}
// Helper function for using CUDA to add vectors in parallel.
cudaError_t histogramWithCuda(int *a, unsigned long long int *c)
{
int *dev_a = 0;
unsigned long long int *dev_c = 0;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
// Allocate GPU buffers for three vectors (two input, one output) .
cudaStatus = cudaMalloc((void**)&dev_c, MAX_HISTORGRAM_NUMBER * sizeof(unsigned long long int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_a, ARRAY_SIZE * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev_a, a, ARRAY_SIZE * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
// Launch a kernel on the GPU with one thread for each element.
//// BLOCK CALCULATOR HERE
////BLOCK CALCULATOR HERE
histogramKernelSingle << < ARRAY_SIZE / (THREAD_COUNT*CHUNK_SIZE), THREAD_COUNT>> > (dev_c, dev_a);
// Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
goto Error;
}
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
goto Error;
}
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev_c, MAX_HISTORGRAM_NUMBER * sizeof(unsigned long long int), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
Error:
cudaFree(dev_c);
cudaFree(dev_a);
return cudaStatus;
}
提前致谢。
仅在配置文件 Activity 中捕获已实现的入住率。 Trace Activity 不支持捕获 GPU 性能计数器。实现的入住率是 sm__active_warps_sum / sm__actice_cycles_sum / SM__MAX_WARPS * 100.
Nsight Visual Studio 版本
Trace Activity 无法收集 Achieved Occupancy。 运行 命令 Nsight |开始性能分析...并在 Activity window select 配置文件 CUDA 应用程序(不是跟踪应用程序)中。默认配置文件 CUDA 应用程序包含实验 Achieved Occupancy。
NVIDIA Visual Profiler
在 NVVP 中确保您正在收集 GPU 性能计数器。默认 activity 将收集时间线但不会收集 GPU 事件。
运行 |生成时间线不会收集 Achieved Occupancy 运行 |分析应用程序将收集 Achieved Occupancy
如果您仍然遇到问题,那么您的系统权限可能有问题。请尝试使用 Nsight 配置文件 CUDA 应用程序或 NVVP | 收集另一组性能计数器收集指标和事件...