MATLAB 中的 free() 和 mxFree() - 两次释放内存
free() and mxFree() in MATLAB - freeing memory twice
美好的一天,
我有以下代码已经给我带来了一天的问题。
我调试了它,在尝试释放内存之前它工作正常。 free() 函数应该在执行结束时自动调用,所以我把 mxFree() 代码注释掉了,希望能得到一个结果。即使我这样做,程序也会释放内存两次,就像手动释放内存的情况一样 - 因此我得出结论,这是我无法控制的。
*** glibc detected *** /usr/local/MATLAB/R2012a/bin/glnx86/MATLAB: free(): invalid pointer: 0xad2427a1 ***
有什么我遗漏的吗?
注意:我已经尝试了一些带有内存分配的 .mex 文件示例,它们工作正常 - 所以错误在下面,在我的代码中。
/*
Beamforming algorithm
Arguments: xr, yr, zr,
t, ts, W, U,
Sdata, NrSensor c, omega_o
Output: S1_sum
S1_sum = beamforming(xr,yr,zr,t,ts,W,U,Sdata,NrSensor,c,omega_o)
*/
#include "mex.h"
#include <stdlib.h>
#include <math.h>
#define INPUT_ARGS 11
#define OUTPUT_ARGS 1
#define Ar(a, b) Ar[b+a*NrSensor]
#define Ai(a, b) Ai[b+a*NrSensor]
#define V(a, b) V[b+a*len_zr]
#define tau(a, b) tau[b+a*NrSensor]
#define tau_s(a, b) tau_s[b+a*len_zr]
#define tau_r(a, b) tau_r[b+a*NrSensor]
#define w(a, b) w[b+a*len_zr]
#define W(a, b) W[b+a*NrSensor]
#define arg(a, b) arg[b+a*len_zr]
#define newrange(a, b) newrange[b+a*len_zr]
#define oldrange(a, b) oldrange[b+a*len_zr]
#define S1_sum_r(a, b, c) S1_sum_r[c+b*len_xr+a*len_yr*len_xr]
#define S1_sum_i(a, b, c) S1_sum_i[c+b*len_xr+a*len_yr*len_xr]
#define Sdata_r(a, b) Sdata_r[b+a*NrSensor]
#define Sdata_i(a, b) Sdata_i[b+a*NrSensor]
#define S1interpr(a, b) S1interpr[b+a*len_zr]
#define S1interpi(a, b) S1interpi[b+a*len_zr]
#define PI_ 3.141592653
double sinc(double x){
return sin(PI_*x)/(PI_*x);
}
void mexFunction(int nlhs, mxArray * plhs[], int nrhs, const mxArray * prhs[])
{
/*
Declarations
*/
int xr_, yr_, i, j, m;
int len_xr, len_yr, len_zr, len_t,
len_t_, NrSensor, NrSensor_Cen;
double _t, _i, arg_min, arg_max, norm_factor;
double start_tau, end_tau, c, omega_o;
double *xr, *yr, *zr, *t, *ts,
*Sdata_r, *Sdata_i, *W;
double *Ar, *Ai, *V, *tau, *tau_r, *tau_s,
*arg, *U, *w, *t_, *x_r, *x_i, *start_index,
*newrange, *oldrange, *S1_sum_r, *S1_sum_i,
*S1interpi, *S1interpr;
/*
Checking number of arguments
*/
if(nrhs != INPUT_ARGS)
mxErrMsgTxt("Incorrect number of arguments!\n");
if(nlhs != OUTPUT_ARGS)
mxErrMsgTxt("Incorrect number of outputs!\n");
/*
Reading arguments
*/
xr = mxGetPr(prhs[0]);
yr = mxGetPr(prhs[1]);
zr = mxGetPr(prhs[2]);
t = mxGetPr(prhs[3]);
ts = mxGetPr(prhs[4]);
W = mxGetPr(prhs[5]);
U = mxGetPr(prhs[6]);
Sdata_r = mxGetPr(prhs[7]);
Sdata_i = mxGetPi(prhs[7]);
NrSensor = (int) mxGetScalar(prhs[8]);
c = mxGetScalar(prhs[9]);
omega_o = mxGetScalar(prhs[10]);
len_xr = mxGetN(prhs[0]);
len_yr = mxGetN(prhs[1]);
len_zr = mxGetN(prhs[2]);
len_t = mxGetM(prhs[3]);
/*
Initialisations
*/
_t = 0.0;
len_t_ = 0;
NrSensor_Cen = NrSensor/2;
/*
Space allocation and checking
*/
arg = malloc(sizeof(double)*len_zr*len_t);
Ar = malloc(sizeof(double)*len_zr*NrSensor);
Ai = malloc(sizeof(double)*len_zr*NrSensor);
V = malloc(sizeof(double)*len_zr*3);
tau = malloc(sizeof(double)*len_zr*NrSensor);
tau_s = malloc(sizeof(double)*len_zr*3);
tau_r = malloc(sizeof(double)*len_zr*NrSensor);
U = malloc(sizeof(double)*3);
w = malloc(sizeof(double)*len_zr*3);
W = malloc(sizeof(double)*NrSensor*3);
ts = malloc(sizeof(double)*len_zr);
t = malloc(sizeof(double)*len_t);
t_ = malloc(sizeof(double)*len_t);
x_r = malloc(sizeof(double)*len_t);
x_i = malloc(sizeof(double)*len_t);
arg = malloc(sizeof(double)*len_zr*len_t);
newrange = malloc(sizeof(double)*len_zr*len_t);
oldrange = malloc(sizeof(double)*len_zr*len_t);
S1interpr = malloc(sizeof(double)*NrSensor*len_zr);
S1interpi = malloc(sizeof(double)*NrSensor*len_zr);
start_index = malloc(sizeof(double)*len_t);
/*
S1_sum_r = mxMalloc(len_xr*len_yr*len_zr);
S1_sum_i = mxMalloc(len_xr*len_yr*len_zr);
*/
int dim_S1_sum[3] = {len_xr, len_yr, len_zr};
plhs[0] = mxCreateNumericArray(3, dim_S1_sum,
mxDOUBLE_CLASS,
mxCOMPLEX);
S1_sum_r = (double*) mxGetPr(plhs[0]);
S1_sum_i = (double*) mxGetPi(plhs[0]);
if(arg == NULL ||
Ar == NULL ||
Ai == NULL ||
V == NULL ||
tau == NULL ||
tau_s == NULL ||
tau_r == NULL ||
U == NULL ||
W == NULL ||
w == NULL ||
ts == NULL ||
t == NULL ||
t_ == NULL ||
x_r == NULL ||
x_i == NULL ||
start_index == NULL ||
newrange == NULL ||
oldrange == NULL ||
S1_sum_r == NULL ||
S1_sum_i == NULL ||
S1interpr == NULL||
S1interpi == NULL){
mxErrMsgTxt("Malloc error!\n");
return;
}
/*
--- INITIALISING S1interp, S1_sum, tau, full of zeros
*/
for(i=0; i<NrSensor; i++){
for(j=0; j<len_zr; j++){
S1interpr(i,j) = 0;
S1interpi(i,j) = 0;
}
}
for(i=0; i<len_xr; i++){
for(j=0; j<len_yr; j++){
for(m=0; m<len_zr; m++){
S1_sum_r(i,j,m) = 0;
S1_sum_i(i,j,m) = 0;
}
}
}
for(i=0; i<NrSensor; i++){
for(j=0; j<len_zr; j++){
tau(i,j) = 0;
}
}
/*
--- MAIN ALGORITHM ---
*/
for(xr_=0; xr_ < len_xr; xr_++){
for(yr_=0; yr_ < len_yr; yr_++){
for(i=0; i < len_zr; i++){
V(0, i) = xr[xr_];
V(1, i) = yr[yr_];
V(2, i) = zr[i];
}
for(i=0; i < len_zr; i++){
tau_s(0, i) = V(0, i) - U[0];
tau_s(1, i) = V(1, i) - U[1];
tau_s(2, i) = V(2, i) - U[2];
}
for(m=0; m < NrSensor; m++){
for(i=0; i < len_zr; i++){
/*
I see no point of the squeeze function
since W is already of known sizes
*/
w(0, i) = V(0, i) - W(0, m);
w(1, i) = V(1, i) - W(1, m);
w(2, i) = V(2, i) - W(2, m);
}
for(i=0; i< len_zr; i++){
/*
sum(w.*w)
*/
_t = w(0, i)*w(0,i) +
w(1, i)*w(1,i) +
w(2, i)*w(2,i);
tau_r(m, i) = sqrt(_t)/c;
}
}
for(m=0; m < len_zr; m++){
for(i=0; i < NrSensor; i++){
/*
Computing sum(tau_s(m, :).*tau_s(m, :))
*/
_t = tau_s(0, m)*tau_s(0, m) +
tau_s(1, m)*tau_s(1, m) +
tau_s(2, m)*tau_s(2, m);
tau(i, m) = tau_r(i, m) + sqrt(_t)/c;
}
}
/*
for(i=0; i < len_zr; i++){
for(j=0; j < NrSensor; j++){
Tau(i,j)=tau(i,j);
}
}
*/
for(i=0; i < len_zr; i++){
for(j=0; j < NrSensor; j++){
Ar(i,j)=cos(omega_o * tau(i, j));
Ai(i,j)=sin(omega_o * tau(i, j));
}
}
/*
--- BIG LOOP AHEAD ---
*/
for(m=0; m < NrSensor; m++){
start_tau = tau(NrSensor_Cen, 1);
end_tau = tau(NrSensor_Cen, len_zr);
/*
Finding index : writing start indexes
and also t_ array
*/
len_t_=0;
for(i=0; i<len_t; i++){
if(t[i] >= start_tau &&
t[i] <= end_tau){
start_index[len_t_] = i;
t_[len_t_] = t[i];
x_r[len_t_] = Sdata_r(i, m);
x_i[len_t_] = Sdata_i(i, m);
len_t_++;
}
}
for(i=0; i < len_zr; i++){
ts[i]=tau(m, i);
}
for(i=0; i < len_t_; i++){
for(j=0; j < len_zr; j++){
newrange(i, j) = ts[j];
}
}
for(i=0; i < len_zr; i++){
for(j=0; j < len_t_; j++){
oldrange(j, i) = t_[j];
}
}
for(i=0; i < len_t_; i++){
for(j=0; j < len_zr; j++){
arg(i, j) = newrange(i, j)-oldrange(i, j);
}
}
arg_min = arg[0];
for(i=0; i < len_t_; i++)
for(j=0; j < len_zr; j++)
if(arg_min>arg(i, j))
arg_min=arg(i, j);
arg_max = arg[0];
for(i=0; i < len_t_; i++)
for(j=0; j < len_zr; j++)
if(arg_max<arg(i, j))
arg_max=arg(i, j);
norm_factor = (2*len_t_)/(arg_max-arg_min);
for(i=0; i < len_zr; i++){
_t = 0;
for(j=0; j < NrSensor; j++){
_t = sinc(arg(i, j)*norm_factor)*x_r[j];
}
S1interpr(m, i) = Ar(m, i) * _t;
_t = 0;
for(j=0; j < NrSensor; j++){
_t = sinc(arg(i, j)*norm_factor)*x_i[j];
}
S1interpi(m, i) = Ai(m, i) * _t;
}
}
for(i=0; i < len_zr; i++){
_t = 0;
for(j=0; j < NrSensor; j++){
_t += S1interpr(j, i);
}
S1_sum_r(xr_, yr_, i) = _t;
_t = 0;
for(j=0; j < NrSensor; j++){
_t += S1interpi(j, i);
}
S1_sum_i(xr_, yr_, i) = _t;
}
}
}
free(arg);
free(Ar);
free(Ai);
free(V);
free(tau);
free(tau_s);
free(tau_r);
free(U);
free(w);
free(W);
free(ts);
free(t);
free(t_);
free(x_r);
free(x_i);
free(newrange);
free(oldrange);
free(S1interpr);
free(S1interpi);
free(start_index);
return;
}
编辑
我已经删除了除开头(直到内存分配)和内存释放之外的所有代码。我现在也在使用 malloc() 和 free()。在内存分配和释放之间,我还放了这段代码:
for(i=0; i<NrSensor; i++){
for(j=0; j<len_zr; j++){
S1interpr(i,j) = 0;
S1interpi(i,j) = 0;
}
}
for(i=0; i<NrSensor; i++){
for(j=0; j<len_zr; j++){
tau(i,j) = 0;
}
}
第一个循环没有问题。但是,第二个显然破坏了变量 V (在它之前声明)和在它之后声明的那个。而且,按照我的逻辑,它似乎没有超过任何一种界限...
第二个循环没有为 tau 正确索引。您将 tau 的索引定义为
#define tau(a, b) tau[b+a*NrSensor]
假设 NrSensor = 10 且 len_zr = 5,让我们遍历第二个循环。对于这种情况,循环变量 i 的最大值为 9,循环变量 j 的最大值为 4。现在,
tau(9,4) => tau[4+9*10] => tau[94].
但是你正在分配 tau
tau = malloc(sizeof(double)*len_zr*NrSensor);
样本值 10 和 5 是
tau = malloc(sizeof(double)*50)
您需要更改 tau 的索引定义以交换 a 和 b,或者更改循环 i 和 j 的顺序。
美好的一天, 我有以下代码已经给我带来了一天的问题。 我调试了它,在尝试释放内存之前它工作正常。 free() 函数应该在执行结束时自动调用,所以我把 mxFree() 代码注释掉了,希望能得到一个结果。即使我这样做,程序也会释放内存两次,就像手动释放内存的情况一样 - 因此我得出结论,这是我无法控制的。
*** glibc detected *** /usr/local/MATLAB/R2012a/bin/glnx86/MATLAB: free(): invalid pointer: 0xad2427a1 ***
有什么我遗漏的吗?
注意:我已经尝试了一些带有内存分配的 .mex 文件示例,它们工作正常 - 所以错误在下面,在我的代码中。
/*
Beamforming algorithm
Arguments: xr, yr, zr,
t, ts, W, U,
Sdata, NrSensor c, omega_o
Output: S1_sum
S1_sum = beamforming(xr,yr,zr,t,ts,W,U,Sdata,NrSensor,c,omega_o)
*/
#include "mex.h"
#include <stdlib.h>
#include <math.h>
#define INPUT_ARGS 11
#define OUTPUT_ARGS 1
#define Ar(a, b) Ar[b+a*NrSensor]
#define Ai(a, b) Ai[b+a*NrSensor]
#define V(a, b) V[b+a*len_zr]
#define tau(a, b) tau[b+a*NrSensor]
#define tau_s(a, b) tau_s[b+a*len_zr]
#define tau_r(a, b) tau_r[b+a*NrSensor]
#define w(a, b) w[b+a*len_zr]
#define W(a, b) W[b+a*NrSensor]
#define arg(a, b) arg[b+a*len_zr]
#define newrange(a, b) newrange[b+a*len_zr]
#define oldrange(a, b) oldrange[b+a*len_zr]
#define S1_sum_r(a, b, c) S1_sum_r[c+b*len_xr+a*len_yr*len_xr]
#define S1_sum_i(a, b, c) S1_sum_i[c+b*len_xr+a*len_yr*len_xr]
#define Sdata_r(a, b) Sdata_r[b+a*NrSensor]
#define Sdata_i(a, b) Sdata_i[b+a*NrSensor]
#define S1interpr(a, b) S1interpr[b+a*len_zr]
#define S1interpi(a, b) S1interpi[b+a*len_zr]
#define PI_ 3.141592653
double sinc(double x){
return sin(PI_*x)/(PI_*x);
}
void mexFunction(int nlhs, mxArray * plhs[], int nrhs, const mxArray * prhs[])
{
/*
Declarations
*/
int xr_, yr_, i, j, m;
int len_xr, len_yr, len_zr, len_t,
len_t_, NrSensor, NrSensor_Cen;
double _t, _i, arg_min, arg_max, norm_factor;
double start_tau, end_tau, c, omega_o;
double *xr, *yr, *zr, *t, *ts,
*Sdata_r, *Sdata_i, *W;
double *Ar, *Ai, *V, *tau, *tau_r, *tau_s,
*arg, *U, *w, *t_, *x_r, *x_i, *start_index,
*newrange, *oldrange, *S1_sum_r, *S1_sum_i,
*S1interpi, *S1interpr;
/*
Checking number of arguments
*/
if(nrhs != INPUT_ARGS)
mxErrMsgTxt("Incorrect number of arguments!\n");
if(nlhs != OUTPUT_ARGS)
mxErrMsgTxt("Incorrect number of outputs!\n");
/*
Reading arguments
*/
xr = mxGetPr(prhs[0]);
yr = mxGetPr(prhs[1]);
zr = mxGetPr(prhs[2]);
t = mxGetPr(prhs[3]);
ts = mxGetPr(prhs[4]);
W = mxGetPr(prhs[5]);
U = mxGetPr(prhs[6]);
Sdata_r = mxGetPr(prhs[7]);
Sdata_i = mxGetPi(prhs[7]);
NrSensor = (int) mxGetScalar(prhs[8]);
c = mxGetScalar(prhs[9]);
omega_o = mxGetScalar(prhs[10]);
len_xr = mxGetN(prhs[0]);
len_yr = mxGetN(prhs[1]);
len_zr = mxGetN(prhs[2]);
len_t = mxGetM(prhs[3]);
/*
Initialisations
*/
_t = 0.0;
len_t_ = 0;
NrSensor_Cen = NrSensor/2;
/*
Space allocation and checking
*/
arg = malloc(sizeof(double)*len_zr*len_t);
Ar = malloc(sizeof(double)*len_zr*NrSensor);
Ai = malloc(sizeof(double)*len_zr*NrSensor);
V = malloc(sizeof(double)*len_zr*3);
tau = malloc(sizeof(double)*len_zr*NrSensor);
tau_s = malloc(sizeof(double)*len_zr*3);
tau_r = malloc(sizeof(double)*len_zr*NrSensor);
U = malloc(sizeof(double)*3);
w = malloc(sizeof(double)*len_zr*3);
W = malloc(sizeof(double)*NrSensor*3);
ts = malloc(sizeof(double)*len_zr);
t = malloc(sizeof(double)*len_t);
t_ = malloc(sizeof(double)*len_t);
x_r = malloc(sizeof(double)*len_t);
x_i = malloc(sizeof(double)*len_t);
arg = malloc(sizeof(double)*len_zr*len_t);
newrange = malloc(sizeof(double)*len_zr*len_t);
oldrange = malloc(sizeof(double)*len_zr*len_t);
S1interpr = malloc(sizeof(double)*NrSensor*len_zr);
S1interpi = malloc(sizeof(double)*NrSensor*len_zr);
start_index = malloc(sizeof(double)*len_t);
/*
S1_sum_r = mxMalloc(len_xr*len_yr*len_zr);
S1_sum_i = mxMalloc(len_xr*len_yr*len_zr);
*/
int dim_S1_sum[3] = {len_xr, len_yr, len_zr};
plhs[0] = mxCreateNumericArray(3, dim_S1_sum,
mxDOUBLE_CLASS,
mxCOMPLEX);
S1_sum_r = (double*) mxGetPr(plhs[0]);
S1_sum_i = (double*) mxGetPi(plhs[0]);
if(arg == NULL ||
Ar == NULL ||
Ai == NULL ||
V == NULL ||
tau == NULL ||
tau_s == NULL ||
tau_r == NULL ||
U == NULL ||
W == NULL ||
w == NULL ||
ts == NULL ||
t == NULL ||
t_ == NULL ||
x_r == NULL ||
x_i == NULL ||
start_index == NULL ||
newrange == NULL ||
oldrange == NULL ||
S1_sum_r == NULL ||
S1_sum_i == NULL ||
S1interpr == NULL||
S1interpi == NULL){
mxErrMsgTxt("Malloc error!\n");
return;
}
/*
--- INITIALISING S1interp, S1_sum, tau, full of zeros
*/
for(i=0; i<NrSensor; i++){
for(j=0; j<len_zr; j++){
S1interpr(i,j) = 0;
S1interpi(i,j) = 0;
}
}
for(i=0; i<len_xr; i++){
for(j=0; j<len_yr; j++){
for(m=0; m<len_zr; m++){
S1_sum_r(i,j,m) = 0;
S1_sum_i(i,j,m) = 0;
}
}
}
for(i=0; i<NrSensor; i++){
for(j=0; j<len_zr; j++){
tau(i,j) = 0;
}
}
/*
--- MAIN ALGORITHM ---
*/
for(xr_=0; xr_ < len_xr; xr_++){
for(yr_=0; yr_ < len_yr; yr_++){
for(i=0; i < len_zr; i++){
V(0, i) = xr[xr_];
V(1, i) = yr[yr_];
V(2, i) = zr[i];
}
for(i=0; i < len_zr; i++){
tau_s(0, i) = V(0, i) - U[0];
tau_s(1, i) = V(1, i) - U[1];
tau_s(2, i) = V(2, i) - U[2];
}
for(m=0; m < NrSensor; m++){
for(i=0; i < len_zr; i++){
/*
I see no point of the squeeze function
since W is already of known sizes
*/
w(0, i) = V(0, i) - W(0, m);
w(1, i) = V(1, i) - W(1, m);
w(2, i) = V(2, i) - W(2, m);
}
for(i=0; i< len_zr; i++){
/*
sum(w.*w)
*/
_t = w(0, i)*w(0,i) +
w(1, i)*w(1,i) +
w(2, i)*w(2,i);
tau_r(m, i) = sqrt(_t)/c;
}
}
for(m=0; m < len_zr; m++){
for(i=0; i < NrSensor; i++){
/*
Computing sum(tau_s(m, :).*tau_s(m, :))
*/
_t = tau_s(0, m)*tau_s(0, m) +
tau_s(1, m)*tau_s(1, m) +
tau_s(2, m)*tau_s(2, m);
tau(i, m) = tau_r(i, m) + sqrt(_t)/c;
}
}
/*
for(i=0; i < len_zr; i++){
for(j=0; j < NrSensor; j++){
Tau(i,j)=tau(i,j);
}
}
*/
for(i=0; i < len_zr; i++){
for(j=0; j < NrSensor; j++){
Ar(i,j)=cos(omega_o * tau(i, j));
Ai(i,j)=sin(omega_o * tau(i, j));
}
}
/*
--- BIG LOOP AHEAD ---
*/
for(m=0; m < NrSensor; m++){
start_tau = tau(NrSensor_Cen, 1);
end_tau = tau(NrSensor_Cen, len_zr);
/*
Finding index : writing start indexes
and also t_ array
*/
len_t_=0;
for(i=0; i<len_t; i++){
if(t[i] >= start_tau &&
t[i] <= end_tau){
start_index[len_t_] = i;
t_[len_t_] = t[i];
x_r[len_t_] = Sdata_r(i, m);
x_i[len_t_] = Sdata_i(i, m);
len_t_++;
}
}
for(i=0; i < len_zr; i++){
ts[i]=tau(m, i);
}
for(i=0; i < len_t_; i++){
for(j=0; j < len_zr; j++){
newrange(i, j) = ts[j];
}
}
for(i=0; i < len_zr; i++){
for(j=0; j < len_t_; j++){
oldrange(j, i) = t_[j];
}
}
for(i=0; i < len_t_; i++){
for(j=0; j < len_zr; j++){
arg(i, j) = newrange(i, j)-oldrange(i, j);
}
}
arg_min = arg[0];
for(i=0; i < len_t_; i++)
for(j=0; j < len_zr; j++)
if(arg_min>arg(i, j))
arg_min=arg(i, j);
arg_max = arg[0];
for(i=0; i < len_t_; i++)
for(j=0; j < len_zr; j++)
if(arg_max<arg(i, j))
arg_max=arg(i, j);
norm_factor = (2*len_t_)/(arg_max-arg_min);
for(i=0; i < len_zr; i++){
_t = 0;
for(j=0; j < NrSensor; j++){
_t = sinc(arg(i, j)*norm_factor)*x_r[j];
}
S1interpr(m, i) = Ar(m, i) * _t;
_t = 0;
for(j=0; j < NrSensor; j++){
_t = sinc(arg(i, j)*norm_factor)*x_i[j];
}
S1interpi(m, i) = Ai(m, i) * _t;
}
}
for(i=0; i < len_zr; i++){
_t = 0;
for(j=0; j < NrSensor; j++){
_t += S1interpr(j, i);
}
S1_sum_r(xr_, yr_, i) = _t;
_t = 0;
for(j=0; j < NrSensor; j++){
_t += S1interpi(j, i);
}
S1_sum_i(xr_, yr_, i) = _t;
}
}
}
free(arg);
free(Ar);
free(Ai);
free(V);
free(tau);
free(tau_s);
free(tau_r);
free(U);
free(w);
free(W);
free(ts);
free(t);
free(t_);
free(x_r);
free(x_i);
free(newrange);
free(oldrange);
free(S1interpr);
free(S1interpi);
free(start_index);
return;
}
编辑
我已经删除了除开头(直到内存分配)和内存释放之外的所有代码。我现在也在使用 malloc() 和 free()。在内存分配和释放之间,我还放了这段代码:
for(i=0; i<NrSensor; i++){
for(j=0; j<len_zr; j++){
S1interpr(i,j) = 0;
S1interpi(i,j) = 0;
}
}
for(i=0; i<NrSensor; i++){
for(j=0; j<len_zr; j++){
tau(i,j) = 0;
}
}
第一个循环没有问题。但是,第二个显然破坏了变量 V (在它之前声明)和在它之后声明的那个。而且,按照我的逻辑,它似乎没有超过任何一种界限...
第二个循环没有为 tau 正确索引。您将 tau 的索引定义为
#define tau(a, b) tau[b+a*NrSensor]
假设 NrSensor = 10 且 len_zr = 5,让我们遍历第二个循环。对于这种情况,循环变量 i 的最大值为 9,循环变量 j 的最大值为 4。现在,
tau(9,4) => tau[4+9*10] => tau[94].
但是你正在分配 tau
tau = malloc(sizeof(double)*len_zr*NrSensor);
样本值 10 和 5 是
tau = malloc(sizeof(double)*50)
您需要更改 tau 的索引定义以交换 a 和 b,或者更改循环 i 和 j 的顺序。