Jupyter Notebook 中的实时实时图表

Real time live graphs in Jupyter Notebook

我刚刚开始学习 python 绘制实时图形。我已经尝试过 Whosebug 上提供的解决方案,但其中 none 有效。下面是我的代码,它不工作。请帮助

import numpy as np
import matplotlib.pyplot as plt
import pyautogui as pg
from matplotlib.animation import FuncAnimation

%matplotlib notebook

binSize = 512
# fig(ax1,ax2) = plt.subplots(2,figsize=(12,6))
f = []
def animate(i):
    try:
        while True:
            x, y = pg.position()
            f.append(x)
    except KeyboardInterrupt:
           print('') 
#     f.append(15) 
    if len(f)<binSize :
        plt.cla()
        plt.plot(f, color='c',LineWidth=1.5,label="Noisy") 
    else:
        plt.cla()
        plt.plot(f[-binSize:],color='c',LineWidth=1.5,label="Noisy")
ani = FuncAnimation(plt.gcf(),animate,interval=1);

所以我更新了代码并尝试绘制两个子图,但过了一段时间

  1. 上图停止清除 canvas(鼠标 X 坐标)
  2. 下图停止更新绘图 (FFT)
  3. 当数据增长超过 binSize 时,notebook 冻结并且绘图更新非常缓慢


    %matplotlib notebook
    
    binSize = 256
    # fig(ax1,ax2) = plt.subplots(2,figsize=(12,6))
    f = []
    t = 0
    dt = 1
    fig,axs = plt.subplots(2,1) 
    
    def animate(i):
        x, y = pg.position() 
        f.append(x) 
        n = len(f)
        if n<binSize : 
            plt.sca(axs[0])
            plt.cla()
            plt.plot(f, color='c',LineWidth=1.5,label="MOUSE") 
        else:
            fhat = np.fft.fft(f,binSize)
            PSD = fhat*np.conj(fhat)/binSize
            freq  = (1/(dt*binSize))*np.arange(binSize)
            L = np.arange(1,np.floor(binSize/2),dtype='int')
            
            # update the code third time
      
               
            axs[0].clear() 
            axs[0].plot(f[-binSize:], color='c',LineWidth=1.5,label="MOUSE") 
#           axs[0].xlim(0,binSize) # this stopped the FFT graph to be plotted
        
#           plt.cla()
            axs[1].clear()  
            axs[1].plot(freq[L],PSD[L],color='r',LineWidth=2,label="FFT")  
    #         plt.xlim(t[0],t[-1])
    #         plt.legend()
    
    #         plt.sca(axs[1])
    #         plt.plot(freq[L],PSD[L],color='c',LineWidth=2,label="Mouse FFT") 
    #         plt.xlim(0,300)
    #         plt.legend()
    #         plt.cla()
    #         plt.plot(f[-binSize:],color='c',LineWidth=1.5,label="Mouse")
            
    ani = FuncAnimation(plt.gcf(),animate,interval=dt)  

你应该试试这个。而不是清除 plt clear axs[0] 等等。此外,不是在 plt.plot 上绘制,而是在 axs[0].plot

上绘制
%matplotlib notebook

binSize = 256
# fig(ax1,ax2) = plt.subplots(2,figsize=(12,6))
f = []
t = 0
dt = 1
fig,axs = plt.subplots(2,1) 
plt.sca(axs[0]) 
plt.sca(axs[1])

def animate(i):
    x, y = pg.position() 
    n = len(f)
    if n<binSize :  
        f.append(x*100) 
        axs[0].clear() 
        axs[0].plot(f, color='c',LineWidth=1.5,label="MOUSE") 
    else:
        f.pop(0)
        f.append(x) 
        fhat = np.fft.fft(f,binSize)
        PSD = fhat*np.conj(fhat)/binSize
        freq  = (1/(dt*binSize))*np.arange(binSize)
        L = np.arange(1,np.floor(binSize/2),dtype='int') # index array of  [1,2,3..... binsize/2] type int
        
        axs[0].clear() 
        axs[0].plot(f[-binSize:], color='c',LineWidth=1.5,label="MOUSE")  
        
        axs[1].clear()  
        axs[1].plot(freq[L],PSD[L],color='r',LineWidth=2,label="FFT")   
        
ani = FuncAnimation(plt.gcf(),animate,interval=dt) 
plt.show()

为了加快速度,您可以像其他答案一样减少数据

f.pop(0)

我也使用不同的方法来更新情节,这在我的电脑上工作得更快。

我在开始时创建空地块

# needs `,` to get first element from list
p1, = axs[0].plot([], [], color='c', LineWidth=1.5, label="MOUSE")
p2, = axs[1].plot([], [], color='r', LineWidth=2,   label="FFT")

以后仅在没有 clear()plot() 的情况下再次更新地块中的数据

        xdata = range(len(f))
        ydata = f
        p1.set_data(xdata, ydata)

        # replace data in plot
        xdata = range(binSize)
        ydata = f[-binSize:]
        p1.set_data(xdata, ydata)
        #p1.set_xdata(xdata)
        #p1.set_ydata(ydata)

        # replace data in plot
        xdata = freq[:(binSize//2)]
        ydata = PSD[:(binSize//2)]
        p2.set_data(xdata, ydata)

只需要运行重新缩放绘图的代码

    # rescale view
    axs[0].relim()
    axs[0].autoscale_view(True,True,True)
    axs[1].relim()
    axs[1].autoscale_view(True,True,True)

animate() 还 return 新地块

    # return plots
    return p1, p2

并且FuncAnimation()必须对它们进行blit

ani = FuncAnimation(..., blit=True)

编辑:

动画效果非常非常快,因为我 运行 它通常 python script.py,而不是在 Jupuyter 笔记本中

编辑:

当我 运行 正常时,我发现了一个我可以找到解决方案的问题:它不会在轴上更新 values/ticks。 Jupyter Notebook没有这个问题。


import numpy as np
import matplotlib.pyplot as plt
import pyautogui as pg
from matplotlib.animation import FuncAnimation

%matplotlib notebook

binSize = 256

f = []
t = 0
dt = 1
fig, axs = plt.subplots(2, 1) 

# needs `,` to get first element from list
p1, = axs[0].plot([], [], color='c', LineWidth=1.5, label="MOUSE")
p2, = axs[1].plot([], [], color='r', LineWidth=2,   label="FFT")

freq = np.arange(binSize)/(dt*binSize)

def animate(i):
    x, y = pg.position() 
    n = len(f)

    if n < binSize :  
        f.append(x)

        # replace data in plot        
        xdata = range(len(f))
        ydata = f
        p1.set_data(xdata, ydata)
        #p1.set_xdata(xdata)
        #p1.set_ydata(ydata)
    else:
        f.pop(0)
        f.append(x)
        
        fhat = np.fft.fft(f, binSize)
        PSD  = fhat * np.conj(fhat) / binSize
        
        # replace data in plot
        #xdata = range(binSize)
        ydata = f[-binSize:]
        #p1.set_data(xdata, ydata)
        #p1.set_xdata(xdata)
        p1.set_ydata(ydata)

        # replace data in plot
        xdata = freq[:(binSize//2)]
        ydata = PSD[:(binSize//2)]
        p2.set_data(xdata, ydata)

    # rescale view
    axs[0].relim()
    axs[0].autoscale_view(True,True,True)
    axs[1].relim()
    axs[1].autoscale_view(True,True,True)
        
    # return plots
    return p1, p2

ani = FuncAnimation(plt.gcf(), animate, interval=dt, blit=True)

plt.show()