Pyomo:多 objective 优化

Pyomo: Multi-objective optimization

我正在使用此代码解决多 objective 优化模型(功率分配)并尝试在我的代码中调整示例。

example:

我试图跳过 'inefficient Pareto-front' 部分并直接绘制 'efficient Pareto-front'。

第一个标签可以运行正常生成Cost_min,Cost_max,Emission_min,Emission_max.

from pyomo.environ import *
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pyplot as plt
import random

# create a model
model = AbstractModel()

# declare decision variables

model.N = Param(mutable=True)
model.J = RangeSet(model.N)
model.A = Param(model.J)
model.B = Param(model.J)
model.C = Param(model.J)
model.D = Param(model.J)
model.E = Param(model.J)
model.F = Param(model.J)
model.P_min = Param(model.J, within=PositiveReals)
model.P_max = Param(model.J, within=PositiveReals)
model.demand = Param(mutable=True)

# declare constraints

def Pbounds(model, j):
    return (model.P_min[j], model.P_max[j])
model.P = Var(model.J, bounds=Pbounds, domain=NonNegativeReals)

def P_LoadgenBalance(model):
    return sum(model.P[j] for j in model.J) >= model.demand
model.P_LoadgenBalance = Constraint(rule=P_LoadgenBalance)

# declare objective_cost

def obj_cost(model):
     return sum(model.A[j]* model.P[j] ** 2 + model.B[j] * model.P[j] + model.C[j] for j in model.J) 
model.cost= Objective(rule=obj_cost, sense=minimize)
# declare objective_emission
def obj_emission(model):
     return sum(model.E[j]* model.P[j] ** 2 + model.D[j] * model.P[j] + model.F[j] for j in model.J) 
model.emission= Objective(rule=obj_emission, sense=minimize)

# deactivate model.emission  calculate emission_max,cost_min

model.emission.deactivate()
instance = model.create_instance("E:\pycharm_project\PD\END-10units.dat")
opt = SolverFactory('Ipopt')
results = opt.solve(instance)
for i in instance.J:
    print(i,value(instance.P[i]))
print( 'cost = ' + str(value(instance.cost)) )
print( 'emission = ' + str(value(instance.emission)) )
emission_max = value(instance.emission)
cost_min = value(instance.cost)


# ## max emission  deactivate model.cost    calculate emission_min,cost_max

model.emission.activate()
model.cost.deactivate()
instance = model.create_instance("E:\pycharm_project\PD\END-10units.dat")
results = opt.solve(instance)


for i in instance.J:
    print(i,value(instance.P[i]))
print( 'cost = ' + str(value(instance.cost)) )
print( 'emission = ' + str(value(instance.emission)) )
emission_min = value(instance.emission)
cost_max = value(instance.cost)

运行在此选项卡中输入代码后,未生成任何错误。但是在输出Pareto-front的时候,这里只显示了一个点

# ## apply normal $\epsilon$-Constraint

model.emission.deactivate()
model.cost.activate()
model.emission_value = Param(initialize=0, mutable=True)

def c_epsilon(model):
    return model.emission <= model.emission_value
model.C_epsilon = Constraint(rule=c_epsilon)
results = opt.solve(instance)

print('Each iteration will keep emission lower than some values between emission_min and emission_max, so ['       + str(emission_min) + ', ' + str(emission_max) + ']')

n = 5
step = int((emission_max - emission_min) / n)
steps = list(range(int(emission_min), int(emission_max), step)) + [emission_max]


# ## apply augmented $\epsilon$-Constraint

# max   emission + delta*epsilon <br>
#  s.t. emission - s = emission_value

model.del_component(model.cost)
model.del_component(model.emission)
model.del_component(model.C_epsilon)

model.delta = Param(initialize=0.00001)

model.s = Var(within=NonNegativeReals)

def obj_cost_1(model):
    return sum(model.cost+model.delta * model.s)
model.obj_cost_1 = Objective(rule=obj_cost_1, sense=maximize)

def C_e(model):
    return model.emission-model.s==model.emission_value
model.C_e= Constraint(rule=C_e)

cost_l = []
emission_l = []
for i in steps:
    model.emission_value = i
    results = opt.solve(instance)  
    cost_l.append(value(instance.cost))
    emission_l.append(value(instance.emission))
plt.plot(cost_l,emission_l,'o-.');
plt.title('efficient Pareto-front');
plt.grid(True);
plt.show()

结果如下图。不知道为什么这个不能输出正确的Paretochart.I不知道是哪一步代码错了

efficient Pareto-front 谁能帮我处理这段代码? Thanks.Vivi

几件事.... :)

怎么了:

在您的循环内部,唯一影响模型的是您将新值分配给 model.e 那是什么?我认为这是一个打字错误,您错误地只是声明了一个名为 e 的新 和未使用的 模型组件实例变量。这就是为什么你没有得到不同的值。我想你想改成 model.emission.

此外,我不会一开始就尝试 1000 次,只尝试 5 次。

需要清理的内容:

您正在循环中实例化一个新求解器。没有必要。您不需要 1000 个不同的求解器,只需重新求解即可。您之前已经有一个求解器。

为了清晰起见,在您的代码中添加一些注释不会让您的手指着火,并且会有助于 T/S,以及一些重新组织。

此外,model.A model.B model.C ... 提供的信息不多。如果可以的话,我会建议更清晰的变量名。