修改残差 LSTM
Modifying residual LSTM
我在这里找到了残差 LSTM 的代码:https://gist.github.com/bzamecnik/8ed16e361a0a6e80e2a4a259222f101e
我一直在使用 LSTM 进行具有 3d 输入(样本、时间步长、特征)和单个输出的时间序列分类。
我有兴趣在我的数据上尝试残差模型,但我需要的是一个带有 sigmoid 激活的单一输出。任何人都知道如何做到这一点?当前模型似乎 return 10 个输出(输入数据中的特征数)。
def make_residual_lstm_layers(input, rnn_width, rnn_depth, rnn_dropout):
"""
The intermediate LSTM layers return sequences, while the last returns a single element.
The input is also a sequence. In order to match the shape of input and output of the LSTM
to sum them we can do it only for all layers but the last.
"""
x = input
for i in range(rnn_depth):
return_sequences = i < rnn_depth - 1
x_rnn = LSTM(rnn_width, recurrent_dropout=rnn_dropout, dropout=rnn_dropout, return_sequences=return_sequences)(x)
if return_sequences:
# Intermediate layers return sequences, input is also a sequence.
if i > 0 or input.shape[-1] == rnn_width:
x = add([x, x_rnn])
else:
# Note that the input size and RNN output has to match, due to the sum operation.
# If we want different rnn_width, we'd have to perform the sum from layer 2 on.
x = x_rnn
else:
# Last layer does not return sequences, just the last element
# so we select only the last element of the previous output.
def slice_last(x):
return x[..., -1, :]
x = add([Lambda(slice_last)(x), x_rnn])
return x
input = Input(shape=(32, 10))
output = make_residual_lstm_layers(input, rnn_width=10, rnn_depth=8, rnn_dropout=0.2)
model = Model(inputs=input, outputs=output)
model.summary()
这部分:model.compile(loss='binary_crossentropy', optimizer='adam') 我可以这样添加:
model = Model(inputs=input, outputs=output)
model.compile(loss='binary_crossentropy', optimizer='adam')
model.summary()
但我需要的是这样的:
input = Input(shape=(32, 10))
output = make_residual_lstm_layers(input, rnn_width=10, rnn_depth=8, rnn_dropout=0.2)
newoutput = Dense(1, activation='sigmoid')(output)
model = Model(inputs=input, outputs=newoutput)
model.compile(loss='binary_crossentropy', optimizer='adam')
model.summary()
有人知道如何修改模型来完成此任务吗?
主要问题是特征维度不匹配 (10 != 1) 因此无法在最后一部分应用跳过连接。这是我的建议,我用一个简单的 LSTM 层替换最后一个块,该层具有 1 个输出和一个 sigmoid 激活
def make_residual_lstm_layers(input, rnn_width, rnn_depth, rnn_dropout):
x = input
for i in range(rnn_depth):
return_sequences = i < rnn_depth - 1
x_rnn = LSTM(rnn_width, recurrent_dropout=rnn_dropout, dropout=rnn_dropout,
return_sequences=return_sequences)(x)
if return_sequences:
if i > 0 or input.shape[-1] == rnn_width:
x = add([x, x_rnn])
else:
x = x_rnn
else:
x = LSTM(1, activation='sigmoid',
recurrent_dropout=rnn_dropout, dropout=rnn_dropout,
return_sequences=return_sequences)(x)
return x
input = Input(shape=(32, 10))
output = make_residual_lstm_layers(input, rnn_width=10, rnn_depth=8, rnn_dropout=0.2)
model = Model(inputs=input, outputs=output)
model.summary()
我在这里找到了残差 LSTM 的代码:https://gist.github.com/bzamecnik/8ed16e361a0a6e80e2a4a259222f101e
我一直在使用 LSTM 进行具有 3d 输入(样本、时间步长、特征)和单个输出的时间序列分类。 我有兴趣在我的数据上尝试残差模型,但我需要的是一个带有 sigmoid 激活的单一输出。任何人都知道如何做到这一点?当前模型似乎 return 10 个输出(输入数据中的特征数)。
def make_residual_lstm_layers(input, rnn_width, rnn_depth, rnn_dropout):
"""
The intermediate LSTM layers return sequences, while the last returns a single element.
The input is also a sequence. In order to match the shape of input and output of the LSTM
to sum them we can do it only for all layers but the last.
"""
x = input
for i in range(rnn_depth):
return_sequences = i < rnn_depth - 1
x_rnn = LSTM(rnn_width, recurrent_dropout=rnn_dropout, dropout=rnn_dropout, return_sequences=return_sequences)(x)
if return_sequences:
# Intermediate layers return sequences, input is also a sequence.
if i > 0 or input.shape[-1] == rnn_width:
x = add([x, x_rnn])
else:
# Note that the input size and RNN output has to match, due to the sum operation.
# If we want different rnn_width, we'd have to perform the sum from layer 2 on.
x = x_rnn
else:
# Last layer does not return sequences, just the last element
# so we select only the last element of the previous output.
def slice_last(x):
return x[..., -1, :]
x = add([Lambda(slice_last)(x), x_rnn])
return x
input = Input(shape=(32, 10))
output = make_residual_lstm_layers(input, rnn_width=10, rnn_depth=8, rnn_dropout=0.2)
model = Model(inputs=input, outputs=output)
model.summary()
这部分:model.compile(loss='binary_crossentropy', optimizer='adam') 我可以这样添加:
model = Model(inputs=input, outputs=output)
model.compile(loss='binary_crossentropy', optimizer='adam')
model.summary()
但我需要的是这样的:
input = Input(shape=(32, 10))
output = make_residual_lstm_layers(input, rnn_width=10, rnn_depth=8, rnn_dropout=0.2)
newoutput = Dense(1, activation='sigmoid')(output)
model = Model(inputs=input, outputs=newoutput)
model.compile(loss='binary_crossentropy', optimizer='adam')
model.summary()
有人知道如何修改模型来完成此任务吗?
主要问题是特征维度不匹配 (10 != 1) 因此无法在最后一部分应用跳过连接。这是我的建议,我用一个简单的 LSTM 层替换最后一个块,该层具有 1 个输出和一个 sigmoid 激活
def make_residual_lstm_layers(input, rnn_width, rnn_depth, rnn_dropout):
x = input
for i in range(rnn_depth):
return_sequences = i < rnn_depth - 1
x_rnn = LSTM(rnn_width, recurrent_dropout=rnn_dropout, dropout=rnn_dropout,
return_sequences=return_sequences)(x)
if return_sequences:
if i > 0 or input.shape[-1] == rnn_width:
x = add([x, x_rnn])
else:
x = x_rnn
else:
x = LSTM(1, activation='sigmoid',
recurrent_dropout=rnn_dropout, dropout=rnn_dropout,
return_sequences=return_sequences)(x)
return x
input = Input(shape=(32, 10))
output = make_residual_lstm_layers(input, rnn_width=10, rnn_depth=8, rnn_dropout=0.2)
model = Model(inputs=input, outputs=output)
model.summary()