Flink 任务管理器超时
Flink Task Manager timeout
随着越来越多的记录被处理,我的程序变得非常慢。我最初认为这是由于内存消耗过多,因为我的程序是字符串密集型的(我正在使用 Java 11,因此应尽可能使用紧凑的字符串)所以我增加了 JVM 堆:
-Xms2048m
-Xmx6144m
我还增加了任务管理器的内存以及超时,flink-conf.yaml
:
jobmanager.heap.size: 6144m
heartbeat.timeout: 5000000
但是,none 这有助于解决问题。该程序在处理大约 350 万条记录后的大约同一点仍然变得非常缓慢,只剩下大约 50 万条记录。当程序接近 350 万大关时,它变得非常非常慢,直到最终超时,总执行时间约为 11 分钟。
我检查了 VisualVm 中的内存消耗,但内存消耗从未超过 700MB.My flink 管道如下所示:
final StreamExecutionEnvironment environment = StreamExecutionEnvironment.createLocalEnvironment(1);
environment.setParallelism(1);
DataStream<Tuple> stream = environment.addSource(new TPCHQuery3Source(filePaths, relations));
stream.process(new TPCHQuery3Process(relations)).addSink(new FDSSink());
environment.execute("FlinkDataService");
大部分工作是在流程函数中完成的,我正在实现数据库连接算法并且列存储为字符串,特别是我正在实现 TPCH 基准测试的查询 3,如果您愿意,请在此处查看 https://examples.citusdata.com/tpch_queries.html.
超时错误是这样的:
java.util.concurrent.TimeoutException: Heartbeat of TaskManager with id <id> timed out.
有一次我也遇到了这个错误:
Exception in thread "pool-1-thread-1" java.lang.OutOfMemoryError: Java heap space
另外,我的 VisualVM 监控,屏幕截图是在事情变得非常缓慢的时候捕获的:
这是我的源函数的 运行 循环:
while (run) {
readers.forEach(reader -> {
try {
String line = reader.readLine();
if (line != null) {
Tuple tuple = lineToTuple(line, counter.get() % filePaths.size());
if (tuple != null && isValidTuple(tuple)) {
sourceContext.collect(tuple);
}
} else {
closedReaders.add(reader);
if (closedReaders.size() == filePaths.size()) {
System.out.println("ALL FILES HAVE BEEN STREAMED");
cancel();
}
}
counter.getAndIncrement();
} catch (IOException e) {
e.printStackTrace();
}
});
}
我基本上读取了我需要的 3 个文件中的每一个文件的一行,根据文件的顺序,我构造了一个元组对象,这是我自定义的 class 称为元组,代表 table,并在该元组有效时发出该元组,即满足日期的某些条件。
我还建议 JVM 在第 1 百万、第 150 万、第 2 百万和第 250 万条记录时进行垃圾收集,如下所示:
System.gc()
关于如何优化它有什么想法吗?
String intern()
救了我。在将每个字符串存储在我的地图中之前,我对每个字符串进行了实习,这非常有效。
这些是我在 link 独立集群上更改的属性,用于计算 TPC-H 查询 03。
jobmanager.memory.process.size: 1600m
heartbeat.timeout: 100000
taskmanager.memory.process.size: 8g # defaul: 1728m
我实施此查询以仅流式传输订单 table,并将其他 table 保留为状态。此外,我正在计算作为无窗口查询,我认为它更有意义并且速度更快。
public class TPCHQuery03 {
private final String topic = "topic-tpch-query-03";
public TPCHQuery03() {
this(PARAMETER_OUTPUT_LOG, "127.0.0.1", false, false, -1);
}
public TPCHQuery03(String output, String ipAddressSink, boolean disableOperatorChaining, boolean pinningPolicy, long maxCount) {
try {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
if (disableOperatorChaining) {
env.disableOperatorChaining();
}
DataStream<Order> orders = env
.addSource(new OrdersSource(maxCount)).name(OrdersSource.class.getSimpleName()).uid(OrdersSource.class.getSimpleName());
// Filter market segment "AUTOMOBILE"
// customers = customers.filter(new CustomerFilter());
// Filter all Orders with o_orderdate < 12.03.1995
DataStream<Order> ordersFiltered = orders
.filter(new OrderDateFilter("1995-03-12")).name(OrderDateFilter.class.getSimpleName()).uid(OrderDateFilter.class.getSimpleName());
// Join customers with orders and package them into a ShippingPriorityItem
DataStream<ShippingPriorityItem> customerWithOrders = ordersFiltered
.keyBy(new OrderKeySelector())
.process(new OrderKeyedByCustomerProcessFunction(pinningPolicy)).name(OrderKeyedByCustomerProcessFunction.class.getSimpleName()).uid(OrderKeyedByCustomerProcessFunction.class.getSimpleName());
// Join the last join result with Lineitems
DataStream<ShippingPriorityItem> result = customerWithOrders
.keyBy(new ShippingPriorityOrderKeySelector())
.process(new ShippingPriorityKeyedProcessFunction(pinningPolicy)).name(ShippingPriorityKeyedProcessFunction.class.getSimpleName()).uid(ShippingPriorityKeyedProcessFunction.class.getSimpleName());
// Group by l_orderkey, o_orderdate and o_shippriority and compute revenue sum
DataStream<ShippingPriorityItem> resultSum = result
.keyBy(new ShippingPriority3KeySelector())
.reduce(new SumShippingPriorityItem(pinningPolicy)).name(SumShippingPriorityItem.class.getSimpleName()).uid(SumShippingPriorityItem.class.getSimpleName());
// emit result
if (output.equalsIgnoreCase(PARAMETER_OUTPUT_MQTT)) {
resultSum
.map(new ShippingPriorityItemMap(pinningPolicy)).name(ShippingPriorityItemMap.class.getSimpleName()).uid(ShippingPriorityItemMap.class.getSimpleName())
.addSink(new MqttStringPublisher(ipAddressSink, topic, pinningPolicy)).name(OPERATOR_SINK).uid(OPERATOR_SINK);
} else if (output.equalsIgnoreCase(PARAMETER_OUTPUT_LOG)) {
resultSum.print().name(OPERATOR_SINK).uid(OPERATOR_SINK);
} else if (output.equalsIgnoreCase(PARAMETER_OUTPUT_FILE)) {
StreamingFileSink<String> sink = StreamingFileSink
.forRowFormat(new Path(PATH_OUTPUT_FILE), new SimpleStringEncoder<String>("UTF-8"))
.withRollingPolicy(
DefaultRollingPolicy.builder().withRolloverInterval(TimeUnit.MINUTES.toMillis(15))
.withInactivityInterval(TimeUnit.MINUTES.toMillis(5))
.withMaxPartSize(1024 * 1024 * 1024).build())
.build();
resultSum
.map(new ShippingPriorityItemMap(pinningPolicy)).name(ShippingPriorityItemMap.class.getSimpleName()).uid(ShippingPriorityItemMap.class.getSimpleName())
.addSink(sink).name(OPERATOR_SINK).uid(OPERATOR_SINK);
} else {
System.out.println("discarding output");
}
System.out.println("Stream job: " + TPCHQuery03.class.getSimpleName());
System.out.println("Execution plan >>>\n" + env.getExecutionPlan());
env.execute(TPCHQuery03.class.getSimpleName());
} catch (IOException e) {
e.printStackTrace();
} catch (Exception e) {
e.printStackTrace();
}
}
public static void main(String[] args) throws Exception {
new TPCHQuery03();
}
}
UDF 在这里:OrderSource, OrderKeyedByCustomerProcessFunction, ShippingPriorityKeyedProcessFunction, and SumShippingPriorityItem。我正在使用 com.google.common.collect.ImmutableList
因为状态不会更新。此外,我只保留状态中必要的列,例如 ImmutableList<Tuple2<Long, Double>> lineItemList
.
随着越来越多的记录被处理,我的程序变得非常慢。我最初认为这是由于内存消耗过多,因为我的程序是字符串密集型的(我正在使用 Java 11,因此应尽可能使用紧凑的字符串)所以我增加了 JVM 堆:
-Xms2048m
-Xmx6144m
我还增加了任务管理器的内存以及超时,flink-conf.yaml
:
jobmanager.heap.size: 6144m
heartbeat.timeout: 5000000
但是,none 这有助于解决问题。该程序在处理大约 350 万条记录后的大约同一点仍然变得非常缓慢,只剩下大约 50 万条记录。当程序接近 350 万大关时,它变得非常非常慢,直到最终超时,总执行时间约为 11 分钟。
我检查了 VisualVm 中的内存消耗,但内存消耗从未超过 700MB.My flink 管道如下所示:
final StreamExecutionEnvironment environment = StreamExecutionEnvironment.createLocalEnvironment(1);
environment.setParallelism(1);
DataStream<Tuple> stream = environment.addSource(new TPCHQuery3Source(filePaths, relations));
stream.process(new TPCHQuery3Process(relations)).addSink(new FDSSink());
environment.execute("FlinkDataService");
大部分工作是在流程函数中完成的,我正在实现数据库连接算法并且列存储为字符串,特别是我正在实现 TPCH 基准测试的查询 3,如果您愿意,请在此处查看 https://examples.citusdata.com/tpch_queries.html.
超时错误是这样的:
java.util.concurrent.TimeoutException: Heartbeat of TaskManager with id <id> timed out.
有一次我也遇到了这个错误:
Exception in thread "pool-1-thread-1" java.lang.OutOfMemoryError: Java heap space
另外,我的 VisualVM 监控,屏幕截图是在事情变得非常缓慢的时候捕获的:
这是我的源函数的 运行 循环:
while (run) {
readers.forEach(reader -> {
try {
String line = reader.readLine();
if (line != null) {
Tuple tuple = lineToTuple(line, counter.get() % filePaths.size());
if (tuple != null && isValidTuple(tuple)) {
sourceContext.collect(tuple);
}
} else {
closedReaders.add(reader);
if (closedReaders.size() == filePaths.size()) {
System.out.println("ALL FILES HAVE BEEN STREAMED");
cancel();
}
}
counter.getAndIncrement();
} catch (IOException e) {
e.printStackTrace();
}
});
}
我基本上读取了我需要的 3 个文件中的每一个文件的一行,根据文件的顺序,我构造了一个元组对象,这是我自定义的 class 称为元组,代表 table,并在该元组有效时发出该元组,即满足日期的某些条件。
我还建议 JVM 在第 1 百万、第 150 万、第 2 百万和第 250 万条记录时进行垃圾收集,如下所示:
System.gc()
关于如何优化它有什么想法吗?
String intern()
救了我。在将每个字符串存储在我的地图中之前,我对每个字符串进行了实习,这非常有效。
这些是我在 link 独立集群上更改的属性,用于计算 TPC-H 查询 03。
jobmanager.memory.process.size: 1600m
heartbeat.timeout: 100000
taskmanager.memory.process.size: 8g # defaul: 1728m
我实施此查询以仅流式传输订单 table,并将其他 table 保留为状态。此外,我正在计算作为无窗口查询,我认为它更有意义并且速度更快。
public class TPCHQuery03 {
private final String topic = "topic-tpch-query-03";
public TPCHQuery03() {
this(PARAMETER_OUTPUT_LOG, "127.0.0.1", false, false, -1);
}
public TPCHQuery03(String output, String ipAddressSink, boolean disableOperatorChaining, boolean pinningPolicy, long maxCount) {
try {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
if (disableOperatorChaining) {
env.disableOperatorChaining();
}
DataStream<Order> orders = env
.addSource(new OrdersSource(maxCount)).name(OrdersSource.class.getSimpleName()).uid(OrdersSource.class.getSimpleName());
// Filter market segment "AUTOMOBILE"
// customers = customers.filter(new CustomerFilter());
// Filter all Orders with o_orderdate < 12.03.1995
DataStream<Order> ordersFiltered = orders
.filter(new OrderDateFilter("1995-03-12")).name(OrderDateFilter.class.getSimpleName()).uid(OrderDateFilter.class.getSimpleName());
// Join customers with orders and package them into a ShippingPriorityItem
DataStream<ShippingPriorityItem> customerWithOrders = ordersFiltered
.keyBy(new OrderKeySelector())
.process(new OrderKeyedByCustomerProcessFunction(pinningPolicy)).name(OrderKeyedByCustomerProcessFunction.class.getSimpleName()).uid(OrderKeyedByCustomerProcessFunction.class.getSimpleName());
// Join the last join result with Lineitems
DataStream<ShippingPriorityItem> result = customerWithOrders
.keyBy(new ShippingPriorityOrderKeySelector())
.process(new ShippingPriorityKeyedProcessFunction(pinningPolicy)).name(ShippingPriorityKeyedProcessFunction.class.getSimpleName()).uid(ShippingPriorityKeyedProcessFunction.class.getSimpleName());
// Group by l_orderkey, o_orderdate and o_shippriority and compute revenue sum
DataStream<ShippingPriorityItem> resultSum = result
.keyBy(new ShippingPriority3KeySelector())
.reduce(new SumShippingPriorityItem(pinningPolicy)).name(SumShippingPriorityItem.class.getSimpleName()).uid(SumShippingPriorityItem.class.getSimpleName());
// emit result
if (output.equalsIgnoreCase(PARAMETER_OUTPUT_MQTT)) {
resultSum
.map(new ShippingPriorityItemMap(pinningPolicy)).name(ShippingPriorityItemMap.class.getSimpleName()).uid(ShippingPriorityItemMap.class.getSimpleName())
.addSink(new MqttStringPublisher(ipAddressSink, topic, pinningPolicy)).name(OPERATOR_SINK).uid(OPERATOR_SINK);
} else if (output.equalsIgnoreCase(PARAMETER_OUTPUT_LOG)) {
resultSum.print().name(OPERATOR_SINK).uid(OPERATOR_SINK);
} else if (output.equalsIgnoreCase(PARAMETER_OUTPUT_FILE)) {
StreamingFileSink<String> sink = StreamingFileSink
.forRowFormat(new Path(PATH_OUTPUT_FILE), new SimpleStringEncoder<String>("UTF-8"))
.withRollingPolicy(
DefaultRollingPolicy.builder().withRolloverInterval(TimeUnit.MINUTES.toMillis(15))
.withInactivityInterval(TimeUnit.MINUTES.toMillis(5))
.withMaxPartSize(1024 * 1024 * 1024).build())
.build();
resultSum
.map(new ShippingPriorityItemMap(pinningPolicy)).name(ShippingPriorityItemMap.class.getSimpleName()).uid(ShippingPriorityItemMap.class.getSimpleName())
.addSink(sink).name(OPERATOR_SINK).uid(OPERATOR_SINK);
} else {
System.out.println("discarding output");
}
System.out.println("Stream job: " + TPCHQuery03.class.getSimpleName());
System.out.println("Execution plan >>>\n" + env.getExecutionPlan());
env.execute(TPCHQuery03.class.getSimpleName());
} catch (IOException e) {
e.printStackTrace();
} catch (Exception e) {
e.printStackTrace();
}
}
public static void main(String[] args) throws Exception {
new TPCHQuery03();
}
}
UDF 在这里:OrderSource, OrderKeyedByCustomerProcessFunction, ShippingPriorityKeyedProcessFunction, and SumShippingPriorityItem。我正在使用 com.google.common.collect.ImmutableList
因为状态不会更新。此外,我只保留状态中必要的列,例如 ImmutableList<Tuple2<Long, Double>> lineItemList
.