.apply 对 keras 层有什么作用?有没有办法省略它或任何其他替代方法来获得相同的输出而不使用 .apply?
What does .apply do for a keras layer? Is there a way to omit it or any other alternative way to get the same output without using .apply?
有人可以解释一下 .apply(input_feature)
的实际作用吗?
VFE_1_layer = tf.keras.layers.Dense(16, tf.nn.relu)
vfe_1_out = VFE_1_layer.apply(feature)
Layer.apply
已弃用。推荐的替代方法是使用 Layer.__call__
代替(这可以通过简单地 调用 来完成):
dense = tf.keras.layers.Dense(16, activation='relu')
new_feature = dense(feature)
这被称为 函数式 API 风格。
您可以找到弃用通知here:
class Layer:
...
@deprecation.deprecated(
date=None, instructions='Please use `layer.__call__` method instead.')
@doc_controls.do_not_doc_inheritable
def apply(self, inputs, *args, **kwargs):
"""Deprecated, do NOT use!
This is an alias of `self.__call__`.
Arguments:
inputs: Input tensor(s).
*args: additional positional arguments to be passed to `self.call`.
**kwargs: additional keyword arguments to be passed to `self.call`.
Returns:
Output tensor(s).
"""
return self.__call__(inputs, *args, **kwargs)
有人可以解释一下 .apply(input_feature)
的实际作用吗?
VFE_1_layer = tf.keras.layers.Dense(16, tf.nn.relu)
vfe_1_out = VFE_1_layer.apply(feature)
Layer.apply
已弃用。推荐的替代方法是使用 Layer.__call__
代替(这可以通过简单地 调用 来完成):
dense = tf.keras.layers.Dense(16, activation='relu')
new_feature = dense(feature)
这被称为 函数式 API 风格。
您可以找到弃用通知here:
class Layer:
...
@deprecation.deprecated(
date=None, instructions='Please use `layer.__call__` method instead.')
@doc_controls.do_not_doc_inheritable
def apply(self, inputs, *args, **kwargs):
"""Deprecated, do NOT use!
This is an alias of `self.__call__`.
Arguments:
inputs: Input tensor(s).
*args: additional positional arguments to be passed to `self.call`.
**kwargs: additional keyword arguments to be passed to `self.call`.
Returns:
Output tensor(s).
"""
return self.__call__(inputs, *args, **kwargs)