mlr3 distrcompose cdf:下标越界
mlr3 distrcompose cdf: subscript out of bounds
使用的 R 版本:3.6.3,mlr3 版本:0.4.0-9000,mlr3proba 版本:0.1.6.9000,mlr3pipelines 版本:0.1.2 和 xgboost 版本:0.90.0.2(如 Rstudio 包管理器中所述)
我已经部署了以下图形管道:
imputePipe = PipeOpImputeMean$new(id = "imputemean", param_vals = list())
survXGPipe = mlr_pipeops$get("learner",lrn("surv.xgboost"))
graphXG= Graph$new()$
add_pipeop(imputePipe)$
add_pipeop(po("learner", lrn("surv.kaplan")))$
add_pipeop(survXGPipe)$
add_pipeop(po("distrcompose"))$
add_edge("imputemean","surv.kaplan")$
add_edge("imputemean","surv.xgboost")$
add_edge("surv.kaplan","distrcompose", dst_channel = "base")$
add_edge("surv.xgboost","distrcompose", dst_channel = "pred")
不幸的是,在执行以下命令时:
lrnXG = GraphLearner$new(graphXG)
trainResults = glrnXG$train(trainVerTask, row_ids = trainDataInd)
predictionResults = glrnXG$predict(trainVerTask, row_ids = verDataInd)
调用预测函数时返回以下错误:
Error in cdf[i, ] : subscript out of bounds
这个错误似乎是 distrcompose 函数特有的,因为我尝试只使用 surv.xgboost、surv.kaplan 实现简单的图形,但它没有出现。
它似乎也是数据不明确的,因为我尝试更改输入数据并且只要使用 distrcompose 就会返回相同的错误。如果您希望我提供有关此事的任何进一步信息,请告诉我,提前感谢您的宝贵时间。
请使用以下代码重现错误:
library(mlr3)
library(mlr3pipelines)
library(mlr3proba)
library(mlr3learners)
task = tgen("simsurv")$generate(1000)
imputePipe = PipeOpImputeMean$new(id = "imputemean", param_vals = list())
survXGPipe = mlr_pipeops$get("learner",lrn("surv.xgboost"))
graphXG= Graph$new()$
add_pipeop(imputePipe)$
add_pipeop(po("learner", lrn("surv.kaplan")))$
add_pipeop(survXGPipe)$
add_pipeop(po("distrcompose"))$
add_edge("imputemean","surv.kaplan")$
add_edge("imputemean","surv.xgboost")$
add_edge("surv.kaplan","distrcompose", dst_channel = "base")$
add_edge("surv.xgboost","distrcompose", dst_channel = "pred")
lrnXG = GraphLearner$new(graphXG)
trainResults = lrnXG$train(task, row_ids = 1:900)
lrnXG$predict(task, row_ids = 901:1000)
这里是distr6的问题,请安装CRAN最新版本的distr6(1.4.2)和mlr3proba(0.2.0)再试
使用的 R 版本:3.6.3,mlr3 版本:0.4.0-9000,mlr3proba 版本:0.1.6.9000,mlr3pipelines 版本:0.1.2 和 xgboost 版本:0.90.0.2(如 Rstudio 包管理器中所述)
我已经部署了以下图形管道:
imputePipe = PipeOpImputeMean$new(id = "imputemean", param_vals = list())
survXGPipe = mlr_pipeops$get("learner",lrn("surv.xgboost"))
graphXG= Graph$new()$
add_pipeop(imputePipe)$
add_pipeop(po("learner", lrn("surv.kaplan")))$
add_pipeop(survXGPipe)$
add_pipeop(po("distrcompose"))$
add_edge("imputemean","surv.kaplan")$
add_edge("imputemean","surv.xgboost")$
add_edge("surv.kaplan","distrcompose", dst_channel = "base")$
add_edge("surv.xgboost","distrcompose", dst_channel = "pred")
不幸的是,在执行以下命令时:
lrnXG = GraphLearner$new(graphXG)
trainResults = glrnXG$train(trainVerTask, row_ids = trainDataInd)
predictionResults = glrnXG$predict(trainVerTask, row_ids = verDataInd)
调用预测函数时返回以下错误:
Error in cdf[i, ] : subscript out of bounds
这个错误似乎是 distrcompose 函数特有的,因为我尝试只使用 surv.xgboost、surv.kaplan 实现简单的图形,但它没有出现。
它似乎也是数据不明确的,因为我尝试更改输入数据并且只要使用 distrcompose 就会返回相同的错误。如果您希望我提供有关此事的任何进一步信息,请告诉我,提前感谢您的宝贵时间。
请使用以下代码重现错误:
library(mlr3)
library(mlr3pipelines)
library(mlr3proba)
library(mlr3learners)
task = tgen("simsurv")$generate(1000)
imputePipe = PipeOpImputeMean$new(id = "imputemean", param_vals = list())
survXGPipe = mlr_pipeops$get("learner",lrn("surv.xgboost"))
graphXG= Graph$new()$
add_pipeop(imputePipe)$
add_pipeop(po("learner", lrn("surv.kaplan")))$
add_pipeop(survXGPipe)$
add_pipeop(po("distrcompose"))$
add_edge("imputemean","surv.kaplan")$
add_edge("imputemean","surv.xgboost")$
add_edge("surv.kaplan","distrcompose", dst_channel = "base")$
add_edge("surv.xgboost","distrcompose", dst_channel = "pred")
lrnXG = GraphLearner$new(graphXG)
trainResults = lrnXG$train(task, row_ids = 1:900)
lrnXG$predict(task, row_ids = 901:1000)
这里是distr6的问题,请安装CRAN最新版本的distr6(1.4.2)和mlr3proba(0.2.0)再试