Highcharter 中的自定义颜色未正确映射到图例

Custom colors in Highcharter are not mapping correctly to the legend

我很难将特定颜色映射到堆叠条形图的值,以便它们在从同一数据集构建的大量图表中保持一致。例如,highcharter 会将默认颜色(或我给它的颜色列表)分配给我的分组分类值,但是当图表被修改时(比如在 Shiny 中),会生成一个新图表,但颜色可能已经改变。这对我的听众来说非常混乱,并且可能会误导他们。

这是一个示例数据集:

responses <- c('Pro','Against','Neutral','Resigned/Accepting','Not Specified')
constituents <- c('dual degree','law only','undergrad only','friend','parent only')
indiv <- rep(1:50)
Name.Change <- sample(responses,50,replace = TRUE)
constituent.type <- sample(constituents,50,replace = TRUE)

demo <- as.data.frame(cbind(indiv,Name.Change,constituent.type))

我对堆叠变量进行因式分解,因为这似乎始终如一地确定了堆叠的顺序。然后我将颜色分配给 'Name.Change' 的值,以便它们在各种图表中保持一致。

demo$Name.Change.fac <- factor(demo$Name.Change, levels = c("Pro","Resigned/Accepting","Neutral","Against","Not Specified"), ordered = TRUE)

demo <- demo %>%
  mutate(
    name.change.color = plyr::mapvalues(
      Name.Change.fac,
      from = c(
        "Pro",
        "Against",
        "Resigned/Accepting",
        "Neutral",
        "Not Specified"
      ),
      to = c("#1395BA","#F16C20","#0D3C55","#EBC844","#A2B86C")
    )
  )

这是我对 HighCharter 的最佳尝试:

demo %>% ## these colors don't match
  group_by(constituent.type,Name.Change.fac,name.change.color) %>%
  summarise(count = n()) %>%
  hchart(type = "bar",
         hcaes(y = count,
               x = constituent.type,
               group = Name.Change.fac,
               color = name.change.color),
         color = unique(demo$name.change.color)) %>%
  hc_plotOptions(bar = list(stacking = "percent")) %>%
  hc_tooltip(shared = TRUE)

如您所见,标签中的颜色与堆叠图表中(正确分配的)颜色不对应。如果我在 hcaes() 中删除 color=name.change.color,条形图和标签之间的颜色匹配,但颜色不是我分配的颜色,并且可能会因图表而异。我探索了手动重新创建图例的方法,但我无法使用反应式点击功能来切换图表中的可见条形。

这是我的图书馆:

library('plyr')
library('dplyr')
library('tidyr')
library('highcharter')

尝试

color = levels(demo$name.change.color)

而不是

color = unique(demo$name.change.color)

给你正确的顺序。

如果您在代码中的某处使用唯一或下降因子水平,事情可能会变得不正常。

或者,您可以像这样简化事情:

invisible(suppressPackageStartupMessages(lapply(c("dplyr","tidyr","highcharter"), 
    require, character.only=TRUE)))
responses <- c('Pro','Against','Neutral','Resigned/Accepting','Not Specified')
constituents <- c('dual degree','law only','undergrad only','friend','parent only')
indiv <- rep(1:50)
set.seed(123)
Name.Change <- factor(sample(responses, 50, replace = TRUE), 
    levels = responses, ordered = TRUE)
constituent.type <- sample(constituents, 50, replace = TRUE)
demo <- tibble(indiv, Name.Change, constituent.type)

name.change.color <- setNames(
    c("#1395BA","#F16C20","#0D3C55","#EBC844","#A2B86C"),
    levels(demo$Name.Change))

demo %>% 
    group_by(constituent.type, Name.Change) %>%
    summarise(count = n()) %>%
    hchart(type = "bar",
           hcaes(y = count,
                 x = constituent.type,
                 group = Name.Change),
           color = name.change.color
    ) %>%
    hc_plotOptions(bar = list(stacking = "percent")) %>%
    hc_tooltip(shared = TRUE)
#> `summarise()` regrouping output by 'constituent.type' (override with `.groups` argument)

reprex package (v0.3.0)

于 2020-07-31 创建