具有多个输入和跨列自定义函数的 curly curly tidy 评估编程

curly curly tidy evaluation programming with multiple inputs and custom function across columns

我的问题与 类似,但我需要跨列应用更复杂的函数,而且我不知道如何将 Lionel 建议的解决方案应用到具有作用域动词的自定义函数,例如 filter_at()filter()+across() 等价物。它看起来不像是引入了“superstache”/{{{}}} 运算符。

这是我想做的事情的非编程示例(不使用 NSE):

library(dplyr)
library(magrittr)

foo <- tibble(group = c(1,1,2,2,3,3),
              a = c(1,1,0,1,2,2),
              b = c(1,1,2,2,0,1))

foo %>%
  group_by(group) %>%
  filter_at(vars(a,b), any_vars(n_distinct(.) != 1)) %>%
  ungroup
#> # A tibble: 4 x 3
#>   group     a     b
#>   <dbl> <dbl> <dbl>
#> 1     2     0     2
#> 2     2     1     2
#> 3     3     2     0
#> 4     3     2     1

我还没有找到这个 filter_at 行与 filter+across() 的等价物,但是由于新的(ish)tidyeval 函数早于 dplyr 1.0 我认为这个问题可以放在一边。这是我尝试制作一个编程版本,其中过滤变量由用户提供带点:

my_function <- function(data, ..., by) {
  dots <- enquos(..., .named = TRUE)
  
  helperfunc <- function(arg) {
    return(any_vars(n_distinct(arg) != length(arg)))
  }
  
  dots <- lapply(dots, function(dot) call("helperfunc", dot))
  
  data %>%
    group_by({{ by }}) %>%
    filter(!!!dots) %>%
    ungroup
}

foo %>%
  my_function(a, b, group)
#> Error: Problem with `filter()` input `..1`.
#> x Input `..1` is named.
#> i This usually means that you've used `=` instead of `==`.
#> i Did you mean `a == helperfunc(a)`?

如果有一种方法可以在 filter_atvars() 参数中插入一个 NSE 运算符,而不必进行所有这些额外的调用,我会很高兴(我假设这就是{{{}}} 函数可以吗?)

也许我误解了问题所在,但 forwarding the dots 的标准模式在这里似乎工作正常:

my_function <- function(data, ..., by) {
  data %>%
    group_by({{ by }}) %>%
    filter_at(vars(...), any_vars(n_distinct(.) != 1)) %>%
    ungroup
}

foo %>%
  my_function( a, b, by=group )     # works

选项across

my_function <- function(data, by, ...) {
 
  dots <- enquos(..., .named = TRUE)
  nm1 <- purrr::map_chr(dots, rlang::as_label) 
     
     
  data %>%
    dplyr::group_by({{ by }}) %>%
    dplyr::mutate(across(nm1, ~ n_distinct(.) !=1, .names = "{col}_ind")) %>%
    dplyr::ungroup() %>% 
    dplyr::filter(dplyr::select(., ends_with('ind')) %>% purrr::reduce(`|`)) %>%
    dplyr::select(-ends_with('ind'))
    
    
}

my_function(foo, group, a, b)
# A tibble: 4 x 3
#  group     a     b
#  <dbl> <dbl> <dbl>
#1     2     0     2
#2     2     1     2
#3     3     2     0
#4     3     2     1

或者用filter/across

foo %>%
   group_by(group) %>%
   filter(any(!across(c(a,b), ~ n_distinct(.) == 1)))
# A tibble: 4 x 3
# Groups:   group [2]
#  group     a     b
#  <dbl> <dbl> <dbl>
#1     2     0     2
#2     2     1     2
#3     3     2     0
#4     3     2     1

vignette("colwise").

中介绍了一种使用 across() 实现此目的的方法
my_function <- function(data, vars, by) {
  
  data %>%
    group_by({{ by }}) %>%
    filter(n_distinct(across({{ vars }}, ~ .x)) != 1) %>%
    ungroup()
  
}
 
foo %>%
  my_function(c(a, b), by = group)

# A tibble: 4 x 3
  group     a     b
  <dbl> <dbl> <dbl>
1     2     0     2
2     2     1     2
3     3     2     0
4     3     2     1