从闪亮的 Plotly 地图中获取和修改方框 select 信息

Obtaining and modifying the box select info from a Plotly map in shiny

我正在尝试创建一个交互式闪亮应用程序,向用户显示 Plotly 地图并允许用户select U.S 中的不同县。然后它可以使用 selected 县的信息来生成图表。但是,等值线图似乎仅 returns curveNumber、pointNumber 和 z 值映射到 selection。我如何根据此信息识别 selected 县?或者我怎样才能让它在 selection 上给出县名?这是我的 ui 和服务器功能:

library(shiny)
library(shinyWidgets)
library(plotly)
library(leaflet)

ui <- fluidPage(
    
    titlePanel("Johns Hopkins COVID-19 Modeling Visualization Map"),
    setBackgroundImage(
        src = "https://brand.jhu.edu/assets/uploads/sites/5/2014/06/university.logo_.small_.horizontal.blue_.jpg"
    ),
    
    sidebarLayout(
        sidebarPanel(
            radioButtons("countyFill", "Choose the County Map Type", c("Map by total confirmed", "Map by total death"), selected = "Map by total confirmed"),
            checkboxGroupInput("statesInput", "Choose the State(s)", 
                               c("AL", "MO", "AK", "MT", "AZ", "NE", 
                                 "AR", "NV", "CA", "NH", "CO", "NJ", 
                                 "CT", "NM", "DE", "NY", "DC", "NC", 
                                 "FL", "ND", "GA", "OH", "HI", "OK", 
                                 "ID", "OR", "IL", "PA", "IN", "RI", 
                                 "IA", "SC", "KS", "SD", "KY", "TN", 
                                 "LA", "TX", "ME", "UT", "MD", "VT", 
                                 "MA", "VA", "MI", "WA", "MN", "WV", 
                                 "MS", "WI", "WY"),
                               inline = TRUE),                       
            actionButton("submit", "Submit (may take 30s to load)")
        ), 
        
        mainPanel(
            tabsetPanel(type = "tabs", 
                        tabPanel("County Level", plotlyOutput("countyPolygonMap"), 
                                 htmlOutput("motionChart"), 
                                 verbatimTextOutput("brush")), 
                        tabPanel("State Level", leafletOutput("statePolygonMap")),
                        tags$div(
                            tags$p(
                                "JHU.edu Copyright © 2020 by Johns Hopkins University & Medicine. All rights reserved."
                            ),
                            tags$p(
                                tags$a(href="https://it.johnshopkins.edu/policies/privacystatement",
                                       "JHU Information Technology Privacy Statement for Websites and Mobile Applications")
                            )
                        )
            )
        )
    )
)
library(shiny)
library(leaflet)
library(magrittr)
library(rgdal)
library(plotly)
library(rjson)
library(dplyr)
library(viridis) 
library(googleVis)
library(lubridate)
library(reshape2)
library(data.table)
library(shinyWidgets)


server <- function(input, output, session) {
    statepolygonZip <- download.file("https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_state_500k.zip", 
                                     destfile = "cb_2018_us_state_500k.zip");
    unzip("cb_2018_us_state_500k.zip");
    statePolygonData <- readOGR("cb_2018_us_state_500k.shp", layer = "cb_2018_us_state_500k", 
                                GDAL1_integer64_policy = TRUE);
    ## obtaning the state shape file data provided by cencus.gov 
    ## for more categories of region shape file: 
    ## https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
    
    url <- 'https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json'
    countyGeo <- rjson::fromJSON(file=url)
    ## Obtaining the geographical file for all U.S. counties
    
    url2<- "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv"
    covidCases <- read.csv(url2, header = TRUE)
    fips <- sprintf("%05d",covidCases$FIPS)
    colnames(covidCases)[6] <- "countyNames"
    totalComfirmed <- covidCases[,c(which(names(covidCases)=="countyNames"), ncol(covidCases))]
    names(totalComfirmed) <- c("countyNames", "cases")
    
    destroyX = function(es) {
        f = es
        for (col in c(1:ncol(f))){ #for each column in dataframe
            if (startsWith(colnames(f)[col], "X") == TRUE)  { #if starts with 'X' ..
                colnames(f)[col] <- substr(colnames(f)[col], 2, 100) #get rid of it
            }
        }
        assign(deparse(substitute(es)), f, inherits = TRUE) #assign corrected data to original name
    }
    destroyX(covidCases)
    
    gvisCasesData <- cbind.data.frame(covidCases$countyNames, covidCases[11,ncol(covidCases)])
    gvisCasesData <- melt(data = setDT(covidCases), id.vars = "countyNames",measure.vars = c(colnames(covidCases)[c(12:ncol(covidCases))]))
    colnames(gvisCasesData)[2:3] <- c("Date", "numCases")
    gvisCasesData$Date <- mdy(gvisCasesData$Date)
    
    
    url3 <- "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_US.csv"
    covidDeath <- read.csv(url3, header = TRUE)
    fips <- sprintf("%05d",covidCases$FIPS)
    colnames(covidDeath)[6] <- "countyNames"
    totalDeath <- covidDeath[,c(which(names(covidDeath)=="countyNames"), ncol(covidDeath))]
    names(totalDeath) <- c("countyNames", "totalDeath")
    
    v <- reactiveValues(data = totalComfirmed)
    observeEvent(input$countyFill, {
        if (input$countyFill == "Map by total confirmed") {
            v$data <-  totalComfirmed$cases;
            v$zmin = 100;
            v$zmax = 12000;
            v$hover <- with(covidCases, paste(countyNames));
        }
        if (input$countyFill == "Map by total death") {
            v$data <-  totalDeath;
            v$zmin = 0;
            v$zmax = 1600;
            v$hover <- with(covidDeath, paste(countyNames));
        }
    })
    
    observeEvent(input$submit, {
        req(input$submit)
        
        output$countyPolygonMap <- renderPlotly({
            countyPolygonMap <- plot_ly(source = "countyMap") %>% add_trace(
                countyName <- covidCases$countyNames,
                type="choroplethmapbox",
                geojson=countyGeo,
                locations=fips,
                z=v$data,
                colorscale="Viridis",
                zmin= v$zmin,
                zmax= v$zmax,
                text = ~v$hover,
                marker=list(line=list(width=0),opacity=0.5)
            ) %>% layout(
                mapbox=list(
                    style="carto-positron",
                    zoom =2,
                    center=list(lon= -95.71, lat=37.09))
                %>% event_register(event = "plotly_selected")
            );
            countyPolygonMap;
            ## generating the interactive plotly map
        })
        
        #output$motionChart <- renderGvis({
        #    selected <- event_data(event = "plotly_selected", source = "countyMap")
        #    selectedCountyCases <- as.integer(unlist(selected[3]))
        #    selectedCounties <- subset(totalComfirmed, totalComfirmed$cases %in% selectedCountyCases)
        #    gvisCasesDataSubset <- subset(gvisCasesData, countyNames %in% c(selectedCounties$countyNames))
        #    motionChart <- gvisMotionChart(gvisCasesDataSubset, "countyNames", "Date", options=list(width=800, height=400))
        #})
        
        output$brush <- renderText({
            selected <- event_data(event = "plotly_selected", source = "countyMap")
            brush <- selected
        })
        
        
        output$statePolygonMap <-renderLeaflet ({
            statesAbbr <- subset(statePolygonData, input$statesInput %in% statePolygonData$STUSPS);
            ## subsetting the shape file with the selected states
            
            leaflet(statesAbbr) %>%
                addPolygons(color = "#444444", weight = 1, smoothFactor = 0.5,
                            opacity = 1.0, fillOpacity = 0.5,
                            fillColor = ~colorQuantile("YlOrRd", ALAND)(ALAND),
                            highlightOptions = highlightOptions
                            (color = "white", weight = 2,bringToFront = TRUE))
        })
        ## producing the map with polygon boundary on the state level
    })
    
}
shinyApp(ui = ui, server = server)

非常感谢您的帮助!

您可以在 plotly 的 add_trace

中添加自定义数据
add_trace(..., customdata = ~yourid,...)

然后可以通过 event_data():

获得该 ID
yourid <- event_data("plotly_click")$customdata

另见 https://plotly-r.com/supplying-custom-data.html